UZH-Logo

Maintenance Infos

Calibration processes in desert ant navigation: vector courses and systematic search.


Wehner, R; Gallizzi, K; Frei, C; Vesely, M (2002). Calibration processes in desert ant navigation: vector courses and systematic search. Journal of Comparative Physiology A, 188(9):683-693.

Abstract

This study investigates the ability of desert ants to adapt their path integration system to an "open-jaw" training paradigm, in which the point of arrival (from the nest) does not coincide with the point of departure (to the nest). Upon departure the ants first run off their home vector and then start a systematic search for the nest. Even if they are subjected to this training-around-a-circuit procedure for more than 50 times in succession, they never adopt straight homeward courses towards the nest. Their path integration vector gets slightly recalibrated (pointing a bit closer to the nest), and their search pattern gets asymmetric (with its search density peak shifted towards the nest), but the bipartite structure of the inbound trajectory invariably remains. These results suggest (1). that the ants cannot learn separate inbound and outbound vectors (i.e. vectors that are not 180 degrees reversals of each other), (2). that the recalibrated vector is dominated by the ant's outbound course, (3). that the recalibration of the vector and the modification of the search geometry are fast and flexible processes occurring whenever the ant experiences a mismatch between the stored and actual states of its path integrator.

Abstract

This study investigates the ability of desert ants to adapt their path integration system to an "open-jaw" training paradigm, in which the point of arrival (from the nest) does not coincide with the point of departure (to the nest). Upon departure the ants first run off their home vector and then start a systematic search for the nest. Even if they are subjected to this training-around-a-circuit procedure for more than 50 times in succession, they never adopt straight homeward courses towards the nest. Their path integration vector gets slightly recalibrated (pointing a bit closer to the nest), and their search pattern gets asymmetric (with its search density peak shifted towards the nest), but the bipartite structure of the inbound trajectory invariably remains. These results suggest (1). that the ants cannot learn separate inbound and outbound vectors (i.e. vectors that are not 180 degrees reversals of each other), (2). that the recalibrated vector is dominated by the ant's outbound course, (3). that the recalibration of the vector and the modification of the search geometry are fast and flexible processes occurring whenever the ant experiences a mismatch between the stored and actual states of its path integrator.

Citations

51 citations in Web of Science®
55 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Zoology (former)
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:1 October 2002
Deposited On:11 Feb 2008 12:16
Last Modified:05 Apr 2016 12:15
Publisher:Springer
ISSN:0340-7594
Publisher DOI:https://doi.org/10.1007/s00359-002-0340-8
PubMed ID:12397439

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations