UZH-Logo

Temperature dependence of the heat diffusivity of proteins


Helbing, Jan; Devereux, Michael; Nienhaus, Karin; Nienhaus, G Ulrich; Hamm, Peter; Meuwly, Markus (2012). Temperature dependence of the heat diffusivity of proteins. Journal of Physical Chemistry A, 116(11):2620-2628.

Abstract

In a combined experimental–theoretical study, we investigated the transport of vibrational energy from the surrounding solvent into the interior of a heme protein, the sperm whale myoglobin double mutant L29W-S108L, and its dependence on temperature from 20 to 70 K. The hindered libration of a CO molecule that is not covalently bound to any part of the protein but is trapped in one of its binding pockets (the Xe4 pocket) was used as the local thermometer. Energy was deposited into the solvent by IR excitation. Experimentally, the energy transfer rate increased from (30 ps)−1 at 20 K to (8 ps)−1 at 70 K. This temperature trend is opposite to what is expected, assuming that the mechanism of heat transport is similar to that in glasses. In order to elucidate the mechanism and its temperature dependence, nonequilibrium molecular dynamics (MD) simulations were performed, which, however, predicted an essentially temperature-independent rate of vibrational energy flow. We tentatively conclude that the MD potentials overestimate the coupling between the protein and the CO molecule, which appears to be the rate-limiting step in the real system at low temperatures. Assuming that this coupling is anharmonic in nature, the observed temperature trend can readily be explained.

In a combined experimental–theoretical study, we investigated the transport of vibrational energy from the surrounding solvent into the interior of a heme protein, the sperm whale myoglobin double mutant L29W-S108L, and its dependence on temperature from 20 to 70 K. The hindered libration of a CO molecule that is not covalently bound to any part of the protein but is trapped in one of its binding pockets (the Xe4 pocket) was used as the local thermometer. Energy was deposited into the solvent by IR excitation. Experimentally, the energy transfer rate increased from (30 ps)−1 at 20 K to (8 ps)−1 at 70 K. This temperature trend is opposite to what is expected, assuming that the mechanism of heat transport is similar to that in glasses. In order to elucidate the mechanism and its temperature dependence, nonequilibrium molecular dynamics (MD) simulations were performed, which, however, predicted an essentially temperature-independent rate of vibrational energy flow. We tentatively conclude that the MD potentials overestimate the coupling between the protein and the CO molecule, which appears to be the rate-limiting step in the real system at low temperatures. Assuming that this coupling is anharmonic in nature, the observed temperature trend can readily be explained.

Citations

11 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

152 downloads since deposited on 19 Sep 2012
35 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2012
Deposited On:19 Sep 2012 08:31
Last Modified:05 Apr 2016 15:57
Publisher:American Chemical Society
ISSN:1089-5639
Funders:Swiss National Science Foundation (SNF) , ERC advanced investigator grant (DYNALLO)
Additional Information:This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry A, copyright © American Chemical Society after peer review and technical editing by the publisher.
Publisher DOI:10.1021/jp2061877
PubMed ID:22047554
Permanent URL: http://doi.org/10.5167/uzh-64643

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 741kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations