UZH-Logo

Transition from IVR limited vibrational energy transport to bulk heat transport


Schade, Marco; Hamm, Peter (2012). Transition from IVR limited vibrational energy transport to bulk heat transport. Chemical Physics, 393(1):46-50.

Abstract

In a previous paper (J. Chem. Phys. 131, 044511 (2009)), it has been shown that on ultrashort length and time scales, the speed of vibrational energy transport along a molecular chain is limited by intrasite vibrational relaxation rather than the actual inter site propagation. However, since intrasite vibrational relaxation is length independent, the inter site propagation rate is expected to become rate-limiting at some length scale, where propagation approaches the bulk limit. In the present paper, we investigate the transition between both regimes. The response of different types of modes may be very different at early times, depending on how much they contribute directly to energy transport. Surprisingly though, when averaging the energy content over all vibrational modes of the various chain sites, the complexity of the intrasite vibrational relaxation process is completely hidden so that energy transport on the nanoscale can be described by an effective propagation rate, that equals the bulk value, even at short times.

In a previous paper (J. Chem. Phys. 131, 044511 (2009)), it has been shown that on ultrashort length and time scales, the speed of vibrational energy transport along a molecular chain is limited by intrasite vibrational relaxation rather than the actual inter site propagation. However, since intrasite vibrational relaxation is length independent, the inter site propagation rate is expected to become rate-limiting at some length scale, where propagation approaches the bulk limit. In the present paper, we investigate the transition between both regimes. The response of different types of modes may be very different at early times, depending on how much they contribute directly to energy transport. Surprisingly though, when averaging the energy content over all vibrational modes of the various chain sites, the complexity of the intrasite vibrational relaxation process is completely hidden so that energy transport on the nanoscale can be described by an effective propagation rate, that equals the bulk value, even at short times.

Citations

2 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

114 downloads since deposited on 19 Sep 2012
28 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2012
Deposited On:19 Sep 2012 08:09
Last Modified:05 Apr 2016 15:57
Publisher:Elsevier
ISSN:03010104
Funders:ERC advanced investigator grant (DYNALLO)
Publisher DOI:10.1016/j.chemphys.2011.11.018
Permanent URL: http://doi.org/10.5167/uzh-64647

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 122kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations