Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-64648

Perakis, Fivos; Hamm, Peter (2012). Two-dimensional infrared spectroscopy of neat ice Ih. Physical Chemistry Chemical Physics (PCCP), 14(18):6250-6256.

Accepted Version
View at publisher


The OH stretch line shape of ice Ih exhibits distinct peaks, the assignment of which remains controversial. We address this longstanding question using two dimensional infrared (2D IR) spectroscopy of the OH stretch of H2O and the OD stretch of D2O of ice Ih at T=80 K. The isotropic response is dominated by a 2D line shape component which does not depend on the pump pulse frequency. The decay time of the component that does depend on the pump frequency is calculated using singular value decomposition (bi-exponential decay H2O: 30 fs, 490 fs; D2O: 40 fs, 690 fs).The anisotropic contribution exhibits on-diagonal peaks, which decay on a very fast timescale (H2O: 85 fs; D2O: 65 fs), with no corresponding anisotropic cross-peaks. Both isotropic and anisotropic results indicate that randomization of excited dipoles occurs with a very rapid rate, just like in neat liquid water. We conclude that the underlying mechanism relates to the complex interplay between exciton migration and exciton-phonon coupling.


11 citations in Web of Science®
10 citations in Scopus®
Google Scholar™



63 downloads since deposited on 19 Sep 2012
8 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Deposited On:19 Sep 2012 11:49
Last Modified:05 Apr 2016 15:57
Publisher:Royal Society of Chemistry
Funders:Swiss National Science Foundation (SNF) through NCCR MUST
Additional Information:Persons who receive the PDF must not make it further available or distribute it.
Publisher DOI:10.1039/C2CP23710E
PubMed ID:22246163

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page