UZH-Logo

Maintenance Infos

DCM for complex-valued data: Cross-spectra, coherence and phase-delays


Friston, K J; Bastos, A; Litvak, V; Stephan, K E; Fries, P; Moran, R J (2012). DCM for complex-valued data: Cross-spectra, coherence and phase-delays. NeuroImage, 59(1):439-455.

Abstract

This note describes an extension of Bayesian model inversion procedures for the Dynamic Causal Modeling (DCM) of complex-valued data. Modeling complex data can be particularly useful in the analysis of multivariate ergodic (stationary) time-series. We illustrate this with a generalization of DCM for steady-state responses that models both the real and imaginary parts of sample cross-spectra. DCM allows one to infer underlying biophysical parameters generating data (like synaptic time constants, connection strengths and conduction delays). Because transfer functions and complex cross-spectra can be generated from these parameters, one can also describe the implicit system architecture in terms of conventional (linear systems) measures; like coherence, phase-delay or cross-correlation functions. Crucially, these measures can be derived in both sensor and source-space. In other words, one can examine the cross-correlation or phase-delay functions between hidden neuronal sources using non-invasive data and relate these functions to synaptic parameters and neuronal conduction delays. We illustrate these points using local field potential recordings from the subthalamic nucleus and globus pallidus, with a special focus on the relationship between conduction delays and the ensuing phase relationships and cross-correlation time lags between population activities.

This note describes an extension of Bayesian model inversion procedures for the Dynamic Causal Modeling (DCM) of complex-valued data. Modeling complex data can be particularly useful in the analysis of multivariate ergodic (stationary) time-series. We illustrate this with a generalization of DCM for steady-state responses that models both the real and imaginary parts of sample cross-spectra. DCM allows one to infer underlying biophysical parameters generating data (like synaptic time constants, connection strengths and conduction delays). Because transfer functions and complex cross-spectra can be generated from these parameters, one can also describe the implicit system architecture in terms of conventional (linear systems) measures; like coherence, phase-delay or cross-correlation functions. Crucially, these measures can be derived in both sensor and source-space. In other words, one can examine the cross-correlation or phase-delay functions between hidden neuronal sources using non-invasive data and relate these functions to synaptic parameters and neuronal conduction delays. We illustrate these points using local field potential recordings from the subthalamic nucleus and globus pallidus, with a special focus on the relationship between conduction delays and the ensuing phase relationships and cross-correlation time lags between population activities.

Citations

31 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 21 Sep 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2012
Deposited On:21 Sep 2012 13:08
Last Modified:05 Apr 2016 15:58
Publisher:Elsevier
ISSN:1053-8119
Funders:Wellcome Trust
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.neuroimage.2011.07.048
PubMed ID:21820062
Permanent URL: https://doi.org/10.5167/uzh-64795

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations