UZH-Logo

Maintenance Infos

Acute effects of single-dose aripiprazole and haloperidol on resting cerebral blood flow (rCBF) in the human brain


Handley, Rowena; Zelaya, Fernando O; Reinders, A A T Simone; Marques, Tiago Reis; O'Gorman, Ruth; Mehta, Mitul A; Alsop, David C; Taylor, Heather; Johnston, Atholl; Williams, Steve; McGuire, Philip; Pariante, Carmine M; Kapur, Shitij; Dazzan, Paola (2013). Acute effects of single-dose aripiprazole and haloperidol on resting cerebral blood flow (rCBF) in the human brain. Human Brain Mapping, 34(2):272-282.

Abstract

Antipsychotic drugs act on the dopaminergic system (first-generation antipsychotics, FGA), but some also directly affect serotonergic function (second-generation antipsychotics, SGA) in the brain. Short and long-term effects of these drugs on brain physiology remain poorly understood. Moreover, it remains unclear whether any physiological effect in the brain may be different for FGAs and SGAs. Immediate (+3.30 h) and different effects of single-dose FGA (haloperidol, 3 mg) and a SGA (aripiprazole, 10 mg) on resting cerebral blood flow (rCBF) were explored in the same 20 healthy volunteers using a pulsed continuous arterial spin labeling (pCASL) sequence (1.5T) in a placebo-controlled, repeated measures design. Both antipsychotics increased striatal rCBF but the effect was greater after haloperidol. Both decreased frontal rCBF, and opposite effects of the drugs were observed in the temporal cortex (haloperidol decreased, aripiprazole increased rCBF) and in the posterior cingulate (haloperidol increased, aripiprazole decreased rCBF). Further increases were evident in the insula, hippocampus, and anterior cingulate after both antipsychotics, in the motor cortex following haloperidol and in the occipital lobe the claustrum and the cerebellum after aripiprazole. Further decreases were observed in the parietal and occipital cortices after aripiprazole. This study suggests that early and different rCBF changes are evident following a single-dose of FGA and SGA. The effects occur in healthy volunteers, thus may be independent from any underlying pathology, and in the same regions identified as structurally and functionally altered in schizophrenia, suggesting a possible relationship between antipsychotic-induced rCBF changes and brain alterations in schizophrenia.

Antipsychotic drugs act on the dopaminergic system (first-generation antipsychotics, FGA), but some also directly affect serotonergic function (second-generation antipsychotics, SGA) in the brain. Short and long-term effects of these drugs on brain physiology remain poorly understood. Moreover, it remains unclear whether any physiological effect in the brain may be different for FGAs and SGAs. Immediate (+3.30 h) and different effects of single-dose FGA (haloperidol, 3 mg) and a SGA (aripiprazole, 10 mg) on resting cerebral blood flow (rCBF) were explored in the same 20 healthy volunteers using a pulsed continuous arterial spin labeling (pCASL) sequence (1.5T) in a placebo-controlled, repeated measures design. Both antipsychotics increased striatal rCBF but the effect was greater after haloperidol. Both decreased frontal rCBF, and opposite effects of the drugs were observed in the temporal cortex (haloperidol decreased, aripiprazole increased rCBF) and in the posterior cingulate (haloperidol increased, aripiprazole decreased rCBF). Further increases were evident in the insula, hippocampus, and anterior cingulate after both antipsychotics, in the motor cortex following haloperidol and in the occipital lobe the claustrum and the cerebellum after aripiprazole. Further decreases were observed in the parietal and occipital cortices after aripiprazole. This study suggests that early and different rCBF changes are evident following a single-dose of FGA and SGA. The effects occur in healthy volunteers, thus may be independent from any underlying pathology, and in the same regions identified as structurally and functionally altered in schizophrenia, suggesting a possible relationship between antipsychotic-induced rCBF changes and brain alterations in schizophrenia.

Citations

28 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 05 Dec 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:05 Dec 2012 13:30
Last Modified:05 Apr 2016 15:58
Publisher:Wiley-Blackwell
ISSN:1065-9471
Publisher DOI:https://doi.org/10.1002/hbm.21436
PubMed ID:22451196
Permanent URL: https://doi.org/10.5167/uzh-64840

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations