Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-64856

Daunizeau, J; Stephan, K E; Friston, K J (2012). Stochastic dynamic causal modelling of fMRI data: should we care about neural noise? NeuroImage, 62(1):464-481.

[img]Published Version
PDF - Registered users only
3MB

Abstract

Dynamic causal modelling (DCM) was introduced to study the effective connectivity among brain regions using neuroimaging data. Until recently, DCM relied on deterministic models of distributed neuronal responses to external perturbation (e.g., sensory stimulation or task demands). However, accounting for stochastic fluctuations in neuronal activity and their interaction with task-specific processes may be of particular importance for studying state-dependent interactions. Furthermore, allowing for random neuronal fluctuations may render DCM more robust to model misspecification and finesse problems with network identification. In this article, we examine stochastic dynamic causal models (sDCM) in relation to their deterministic counterparts (dDCM) and highlight questions that can only be addressed with sDCM. We also compare the network identification performance of deterministic and stochastic DCM, using Monte Carlo simulations and an empirical case study of absence epilepsy. For example, our results demonstrate that stochastic DCM can exploit the modelling of neural noise to discriminate between direct and mediated connections. We conclude with a discussion of the added value and limitations of sDCM, in relation to its deterministic homologue.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
DDC:170 Ethics
610 Medicine & health
Language:English
Date:2012
Deposited On:26 Sep 2012 14:46
Last Modified:07 Jan 2014 06:37
Publisher:Elsevier
ISSN:1053-8119
Publisher DOI:10.1016/j.neuroimage.2012.04.061
PubMed ID:22579726
Citations:Web of Science®. Times Cited: 17
Google Scholar™
Scopus®. Citation Count: 18

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page