UZH-Logo

Maintenance Infos

Stochastic dynamic causal modelling of fMRI data: should we care about neural noise?


Daunizeau, J; Stephan, K E; Friston, K J (2012). Stochastic dynamic causal modelling of fMRI data: should we care about neural noise? NeuroImage, 62(1):464-481.

Abstract

Dynamic causal modelling (DCM) was introduced to study the effective connectivity among brain regions using neuroimaging data. Until recently, DCM relied on deterministic models of distributed neuronal responses to external perturbation (e.g., sensory stimulation or task demands). However, accounting for stochastic fluctuations in neuronal activity and their interaction with task-specific processes may be of particular importance for studying state-dependent interactions. Furthermore, allowing for random neuronal fluctuations may render DCM more robust to model misspecification and finesse problems with network identification. In this article, we examine stochastic dynamic causal models (sDCM) in relation to their deterministic counterparts (dDCM) and highlight questions that can only be addressed with sDCM. We also compare the network identification performance of deterministic and stochastic DCM, using Monte Carlo simulations and an empirical case study of absence epilepsy. For example, our results demonstrate that stochastic DCM can exploit the modelling of neural noise to discriminate between direct and mediated connections. We conclude with a discussion of the added value and limitations of sDCM, in relation to its deterministic homologue.

Dynamic causal modelling (DCM) was introduced to study the effective connectivity among brain regions using neuroimaging data. Until recently, DCM relied on deterministic models of distributed neuronal responses to external perturbation (e.g., sensory stimulation or task demands). However, accounting for stochastic fluctuations in neuronal activity and their interaction with task-specific processes may be of particular importance for studying state-dependent interactions. Furthermore, allowing for random neuronal fluctuations may render DCM more robust to model misspecification and finesse problems with network identification. In this article, we examine stochastic dynamic causal models (sDCM) in relation to their deterministic counterparts (dDCM) and highlight questions that can only be addressed with sDCM. We also compare the network identification performance of deterministic and stochastic DCM, using Monte Carlo simulations and an empirical case study of absence epilepsy. For example, our results demonstrate that stochastic DCM can exploit the modelling of neural noise to discriminate between direct and mediated connections. We conclude with a discussion of the added value and limitations of sDCM, in relation to its deterministic homologue.

Citations

31 citations in Web of Science®
33 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 26 Sep 2012
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2012
Deposited On:26 Sep 2012 14:46
Last Modified:05 Apr 2016 15:58
Publisher:Elsevier
ISSN:1053-8119
Publisher DOI:10.1016/j.neuroimage.2012.04.061
PubMed ID:22579726
Permanent URL: http://doi.org/10.5167/uzh-64856

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations