DNA copy number alterations in central primitive neuroectodermal tumors and tumors of the pineal region: an international individual patient data meta-analysis

von Bueren, André O; Gerss, Joachim; Hagel, Christian; Cai, Haoyang; Remke, Marc; Hasselblatt, Martin; Feuerstein, Burt G; Pernet, Sarah; Delattre, Olivier; Korshunov, Andrey; Rutkowski, Stefan; Pfister, Stefan M; Baudis, Michael

Abstract: Little is known about frequency, association with clinical characteristics, and prognostic impact of DNA copy number alterations (CNA) on survival in central primitive neuroectodermal tumors (CNS-PNET) and tumors of the pineal region. Searches of MEDLINE, Pubmed, and EMBASE-after the original description of comparative genomic hybridization in 1992 and July 2010-identified 15 case series of patients with CNS-PNET and tumors of the pineal region whose tumors were investigated for genome-wide CNA. One additional case study was identified from contact with experts. Individual patient data were extracted from publications or obtained from investigators, and CNAs were converted to a digitized format suitable for data mining and subgroup identification. Summary profiles for genomic imbalances were generated from case-specific data. Overall survival (OS) was estimated using the Kaplan-Meier method, and by univariable and multivariable Cox regression models. In their overall CNA profiles, low grade tumors of the pineal region clearly diverged from CNS-PNET and pineoblastoma. At a median follow-up of 89 months, 7-year OS rates of CNS-PNET, pineoblastoma, and low grade tumors of the pineal region were 22.9 ± 6, 0 ± 0, and 87.5 ± 12 %, respectively. Multivariable analysis revealed that histology (CNS-PNET), age (<2.5 years), and possibly recurrent CNAs were associated with unfavorable OS. DNA copy number profiling suggests a close relationship between CNS-PNET and pineoblastoma. Low grade tumors of the pineal region differed from CNS-PNET and pineoblastoma. Due to their high biological and clinical variability, a coordinated prospective validation in future studies is necessary to establish robust risk factors.

DOI: https://doi.org/10.1007/s11060-012-0911-7

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-64879
Accepted Version

Originally published at:
von Bueren, André O; Gerss, Joachim; Hagel, Christian; Cai, Haoyang; Remke, Marc; Hasselblatt, Martin; Feuerstein, Burt G; Pernet, Sarah; Delattre, Olivier; Korshunov, Andrey; Rutkowski, Stefan; Pfister, Stefan M; Baudis, Michael (2012). DNA copy number alterations in central primitive neuroectodermal tumors and tumors of the pineal region: an international individual patient data meta-analysis. Journal of Neuro-Oncology, 109(2):415-423.
DOI: https://doi.org/10.1007/s11060-012-0911-7
DNA copy number alterations in central primitive neuroectodermal tumors and tumors of the pineal region: an international individual patient data meta-analysis

André O. von Bueren¹, Joachim Gerss², Christian Hagel³, Haoyang Cai⁴, Marc Remke⁵, Martin Hasselblatt⁶, Burt G. Feuerstein⁷, Sarah Pernet⁸, Olivier Delattre⁸, Andrey Korshunov⁹, Stefan Rutkowski¹, Stefan M. Pfister⁵, and Michael Baudis⁴

¹Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
²Institute of Biostatistics and Clinical Research, University of Muenster, Germany
³Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
⁴Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
⁵Division Molecular Genetics, German Cancer Research Center, Heidelberg, and Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Germany
⁶Institute of Neuropathology, University of Muenster, Germany
⁷Department of Neurology, Barrow Neurologic Institute, University of Arizona College of Medicine, Phoenix, Arizona, USA
⁸Institut Curie, Unité de génétique somatique, Paris, France
⁹Department of Neuropathology, University of Heidelberg, Heidelberg, Germany

- 1 -
Correspondence to: André O. von Bueren, M.D., Ph.D.

Department of Pediatric Hematology and Oncology

University Medical Center Hamburg-Eppendorf

Martinistrasse 52, D-20246 Hamburg, Germany

Phone: ++49 40-7410-55842; Fax: ++49 40-7410-58300

E-mail: a.von-bueren@uke.de

Keywords: Chromosomal imbalances Prognostic markers Comparative genomic hybridization Brain tumor
Abstract

Little is known about frequency, association with clinical characteristics, and prognostic impact of DNA copy number alterations (CNA) on survival in central primitive neuroectodermal tumors (CNS-PNET) and tumors of the pineal region. Searches of MEDLINE, Pubmed, and EMBASE - after the original description of comparative genomic hybridization and July 2010 - identified 15 case series of patients with CNS-PNET and tumors of the pineal region whose tumors were investigated for genome-wide CNA. One additional case study was identified from contact with experts. Individual patient data were extracted from publications or obtained from investigators, and CNAs were converted to a digitized format suitable for data mining and subgroup identification. Summary profiles for genomic imbalances were generated from case specific data. Overall survival (OS) was estimated using Kaplan-Meier method, by univariable, and multivariable Cox regression models. In their overall CNA profiles, low grade tumors of the pineal region clearly diverged from CNS-PNET and pineoblastoma. At a median follow-up of 89 months, 7-year OS rates of CNS-PNET, pineoblastoma, and low grade tumors of the pineal region were 22.9% ± 6%, 0% ± 0%, and 87.5% ± 12%, respectively. Multivariable analysis revealed that histology (CNS-PNET), age (≤ 2.5 years), and possibly recurrent CNAs were associated with unfavorable OS. DNA copy number profiling suggests a close relation between CNS-PNET and pineoblastoma. Low grade tumors of the pineal region differed from CNS-PNET and pineoblastoma. Due to their high biological and clinical variability, a coordinated prospective validation in future studies is necessary to establish robust risk factors.
Introduction

Central nervous system primitive neuroectodermal tumors (CNS-PNET) are a heterogeneous group of WHO grade IV lesions (Supplementary Table 1). They comprise 3-7% of brain tumors in children and young adults [1-2] and are associated with a dismal prognosis [3-4]. Histologically, these highly proliferative lesions are currently divided into CNS-PNET or supratentorial PNET, respectively (synonym PNET not otherwise specified, PNET NOS), CNS neuroblastoma, CNS ganglioneuroblastoma, medulloepithelioma, and ependymoblastoma [5]. CNS-PNET and medulloblastoma share a similar histology and are often solely distinguishable by their supratentorial versus infratentorial location. Further, pineoblastoma, a WHO grade IV tumor of the pineal gland [5], is filed in some studies as CNS-PNET although pineoblastoma forms a group of neoplasms of the pineal region together with pineocytoma, pineal parenchymal tumor of intermediate differentiation, and papillary tumor of the pineal region [5]. The classification of malignancies within the group of embryonal tumors has changed considerably in the last four editions of the WHO classification of tumors of the CNS (Supplementary Table 1). Tumor classification systems are increasingly complemented by molecular genetic profiling data, especially in hematologic neoplasias [6]. However, for the various subtypes of CNS-PNET such data is still scarce and large series are missing. Profiling of regional copy number abnormalities (CNA) by genomic hybridization techniques is a robust methodology for whole genome data analysis. Principle techniques include the different variants of chromosomal and array based comparative genomic hybridization (cCGH/aCGH; [7-10]) and single-color oligonucleotide array technologies (e.g. genomic single nucleotide polymorphism (SNP) arrays).
In contrast to data from gene expression measurements, CGH data is easily adaptable across multiple datasets to perform a meta-analysis. Methods to assess genomic CNAs are standardized and reproducible as demonstrated in previous reports (e.g. [11-12]). Some earlier reviews have reported on specific types of aberrations or were focused on the descriptive analysis of certain classes of malignancies [13-14].

Due to the low incidence of CNS-PNET and pineoblastoma, only a few CGH studies have been reported in these tumors [2, 15-17]. So far, results have suggested that CNS-PNET are genetically heterogeneous with frequent and diverse CNAs and that CNA patterns are distinct from those observed in medulloblastoma [2, 15-17].

For the present study, we performed an individual patient data (IPD) meta-analysis - a specific method of systematic review [18] offering advantages for meta-analysis [19-20] - of genomic imbalances in CNS-PNET and tumors of the pineal region. The collected data is made available through the “Progenetix” molecular-cytogenetic database (www.progenetix.org: [14, 21-22]).
Methods

Search strategy, and selection criteria

We did a modification of the Cochrane Highly Sensitive Search Strategy for prognostic studies [20] combined with predefined search terms in MEDLINE, Pubmed, and EMBASE without language restriction [23-24]. The process of the study retrieval, in- and exclusion of studies/patients is displayed in the flow chart (Fig. 1) according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. The search was limited to articles published after the original description of CGH [7] until July 2010. Key words were: “medullo(-blasto)ma(s)”, “primitive neuroectodermal tumo(u)r(s)”,”neuroectodermal tumo(u)r(s) primitive” “pnet(s)”,”medullo(-)-epithelioma(s)”, “ependymoblastoma(s)”, “ganglioneuroblastoma(s)”, “pinealoma”, “pineocytoma(s)”, “pineoblastoma(s)”, “pineal tumo(u)r(s)”, “pineal parenchymal tumo(u)r(s)”, “mixed transitional pineal tumo(u)r(s)”, “mixed transitional pineal tumo(u)r(s)”, “atypical teratoid rhabdoid tumo(u)r(s)”, “rhabdoid tumo(u)r(s)”, “AT(1)RT” and “rhabdoid”, “supratentorial neoplasm(s)” or “neuroblastoma(s)” and “central nervous system neoplasm(s)”; and “cgh” or “comparative genomic hybridization” or “snp” or “single nucleotide polymorphism” or “genomic array(s)” or “copy number” or “dna microarray(s)” or “amplification”. Additionally to the search queries, we followed references from the selected articles and assessed each abstract. Minimal requirements for inclusion of a patient to the study were the availability of case specific genomic copy number data with whole genome coverage, the unambiguous diagnostic classification of CNS-PNET/tumor of the pineal region, and matching available or inferred locus information.
Clinical and CNA data collection, data extraction, quality assessment, conversion of CNA data, and data synthesis

For CGH results specified in cytogenetic annotation formats, data was standardized to ISCN 1995 (International System for Human Cytogenetic Nomenclature (1995)) “rev ish” format based on an 862 bands karyotype and checked for semantically correct annotation using dedicated software. For genomic array data without annotated gain/loss information, clone specific data files were segmented using Progenetix website tools. Normalized data was converted to Golden Path mapped copy number status information by software implemented in the Perl scripting language [14]. In a first step, clinical and genomic data were extracted from publications by two reviewers (AOVB and MB). Subsequently, the original data, in particular in case of incomplete data (genomic and clinical data), for each participant was obtained and updated directly from the researcher responsible for each included study [25]. To prevent duplicate inclusions, authors were asked to indicate whether a patient had been analyzed within different studies. In addition, copy number profiles were clustered for similarity and reviewed for the occurrence of profile pairs, in order to avoid duplicate cases due to republished data. Data of 3 unpublished CNS-PNET patients were provided by two authors (SP and OD). Generally, two approaches to perform IPD meta-analyses are used. First, IPD meta-analyses can be performed directly, as if all data belong to a single trial/study, termed the “one-stage” approach [26]. Second, a “two-stage” approach can be also used. Each trial/study is analyzed separately using its raw data before the summary results from each trial/study are pooled and analyzed using conventional meta-analyses techniques [26]. Due to the small patient numbers of each individual case series the “one-stage” approach was used here.
For the evaluation of regional copy number changes, non-overlapping genomic segments were generated based on the complete CNA data from all cases. For each of these intervals, case specific involvement was evaluated and gain/loss frequencies determined. For visualization and ordering of case specific CNA data, data matrices were produced containing imbalance status (gain, or loss) mapped to a variety of genomic intervals (from chromosomal arm level down to 1Mb). Cases were ordered by hierarchical clustering of gain/loss matrices (unsupervised, complete linkage), and the derived case order was used for re-plotting of the original CNA annotations. A relatively resolution-independent surrogate marker of genomic instability, CNA complexity, was determined for each case by evaluating the occurrence of gain and loss events per chromosome arm, with a maximum score of 2 per arm (i.e. occurrence of one or more of each gain and loss; modified from [27]).

To evaluate imbalance distribution in relation to diagnostic assignment, for each of the entities in our dataset gain/loss frequencies were calculated mapped to genomic intervals on a 5Mb level. Copy number profiles were compared by generating a heatmap of gain/loss distributions.

Cases with clinical follow-up were evaluated with respect to correlation of clinical factors and regional CNA status to OS. OS was defined as date of diagnosis to death of any cause or to the date of last visit. Cut-off values of age and CNA complexity were determined by recursive partitioning [28]. Univariable and multivariable survival analyses were performed. OS was estimated by the Kaplan-Meier method, and the log-rank test was used for comparisons of survival in different groups [29]. Univariable analyses to investigate the effect of age (continuous), and CNA
complexity (continuous) on OS was done with univariable Cox regression analysis. Multivariable analyses were performed using Cox’s proportional hazards model. All statistical analyses are intended to be rather exploratory than confirmatory. P-values are considered statistically significant in case p < 0.05. No adjustment for multiple testing was carried out. Statistical analyses were performed using SAS (Version 9.2 for Windows, SAS Institute Inc., Cary, NC, USA), and PASW Statistics 18 for Windows (SPSS Inc., Chicago, IL, USA).
Results

Figure 1 illustrates the process of evaluating articles for inclusion in the IPD meta-analysis. We identified 1220 papers by the search terms. The number of papers was reduced to 840 after removing of duplicates (by titles and abstracts). Title and abstract review resulted in the exclusion of 710 papers. Three case specific data (one case series) were provided by two authors. We reviewed 131 papers in full, from which 15 studies, and one unpublished case series (n=3), met inclusion criteria for this study (Supplementary Figure 1).

Study characteristics and quality assessment

The 16 studies included here comprised 107 patients in total, after exclusion of 4 cases with ambiguous CNA profiles. From 61 patients information about OS was available (clinical characteristics are shown in Table 1). Of those, 38 patients were profiled using aCGH and 23 patients using cCGH. The median follow-up time for survivors was 75 months, and the median follow-up time across all patients was 89 months. Fifteen children were aged ≤ 2.5 years, 46 patients were aged > 2.5 years. The cohort compromised all tumor entities classified as CNS-PNET in the current WHO classification when taking into account the update of earlier WHO classification in which some of these tumors were partly classified as different subgroups of embryonal tumors [5, 30] (n=46), and tumors of the pineal region (n=15) which included pineocytoma (n=4), pineal parenchymal tumor of intermediate differentiation (n=3), papillary tumor of the pineal region (n=5), and pineoblastoma (n=3). Mean CNA complexity was 9.4 (range, 0.00-30.00). For the purpose of statistical analysis, CNS-PNET were considered as one group and tumors of the pineal region were considered as another group.
Overall genomic imbalance patterns in central nervous system primitive neuroectodermal tumors and tumors of the pineal region

In order to evaluate the overall patterns of genomic imbalances in bona fide CNS-PNET and tumors of the pineal region, we visualized the case-specific CNAs of all tumors clustered for their overall imbalance similarities (Fig. 1 a). In CNS-PNET (n=88), frequent gains of chromosomes 1q4 (n= 31 [35%]), 2p2 (n= 27 [31%]), and 7q3 (n= 16 [18%]) as well as losses involving chromosome 13q2 (n= 21 [24%]), and 6q (n= 18 [20%]) could be observed among other less frequent changes (Fig. 1 b). In contrast, low grade tumors of the pineal region were characterized by gains of chromosomes 4q2 (n= 6 [46%]), and 12 (n=5 [38%]) as well as losses of chromosomes 10 (n=4 [31%]), and 22 (n=5 [38%]). Interestingly, pineoblastoma (n=6) displayed a pattern of genomic imbalances unrelated to the changes observed in the group of low grade tumors of the pineal region. Supplementary Figures 2-4 illustrate gains and losses of the different disease entities.

We observed frequent gains involving chromosome 2 and losses involving chromosome 6 in ependymoblastoma as well as in medulloepithelioma (Supplementary Fig. 3b, 3c). Losses of chromosome 6 and 13 were typical for ependymoblastoma.

Embryonal tumor with abundant neuropil and true rosettes (ETANTR) was first described by Eberhart et al. [31], but is so far not listed as a distinct tumor entity in the 2007 WHO classification [5] and represents a CNS-PNET with “ependymoblastic” rosettes [32]. Recently, Korshunov and colleagues demonstrated in a series of 21 ependymoblastoma and 20 ETANTR that 95% of ETANTRs and 90% of ependymoblastoma have the unique focal amplification at 19q13.42 [33].
Therefore, the term embryonal tumor with multilayered rosettes (ETMR) has been suggested for ependymoblastoma and ETANTR, a new entity with multilayered rosettes for which amplification at 19q13.42 represents a rather sensitive and specific marker [32].

In our cohort we identified 9 tumors with such an amplification (one ETANTR reported by Pfister et al. [33]; all other tumors reported by Li et al. [2]). As described previously by Li et al. [2], cases with such an amplification predominantly (8/9) also displayed gains of the whole or the major part of chromosome 2. For some additional cases with gain of chromosome 2 identified by cCGH, no high resolution data was available. Therefore, we may not rule out an additional amplification at 19q13.42 in these cases.

Univariable and multivariable survival analysis of clinical factors and CNA complexity

To assess which parameters contribute to prognosis, we evaluated each clinical variable by univariable Kaplan-Meier analysis. Tested variables were: Gender, age, histology, (CNS-PNET versus tumors of the pineal region), metastatic stage (no metastases versus metastases), extent of postoperative residual disease (complete/gross total resection versus residual disease ≥ 1.5 cm³), radiotherapy (no radiotherapy/local radiotherapy versus cranio-spinal radiotherapy), chemotherapy (no chemotherapy versus chemotherapy), CNA complexity (< 11 versus ≥ 11 as defined by recursive partitioning), tumor sample source (primary tumor versus relapse), and technique (aCGH versus cCGH). Supplementary Table 2 illustrates the factors (histology, CNA complexity, and age) showing differences as assessed by univariable analysis. Patients with tumors of the pineal region had a more favorable OS when compared to patients with CNS-PNET (7-year OS: 64.7% ± 15% versus 22.9% ± 6%,...
p=0.007). Of note, all three patients with a pineoblastoma and available follow-up were dead 33 months after diagnosis, whereas all other patients with low grade tumors of the pineal region had excellent outcome (7-year OS: 87.5% ± 12%). Patients aged ≤ 2.5 years had unfavorable OS when compared to patients aged > 2.5 years (7-year OS: 0% ± 0% versus 41.3% ± 8%, p=0.001). OS rates were similar in CNS-PNET patients with and without the amplification at 19q13.42. Univariable cox regression analysis confirmed that increasing age (continuous variable) is denoting a more favorable OS (hazard ratio, 0.967 [per year]; 95% confidence interval, 0.939-0.996; P = 0.0282) and increasing CNA complexity (continuous variable) a less favorable OS (hazard ratio, 1.063 [per unit]; 95% confidence interval, 1.012-1.117; P = 0.0153).

Multivariable analysis of clinical factors and CNA complexity revealed that histology (tumors of the pineal region), age (older than 2.5 years) and CNA complexity < 11 are favorable prognostic factors (Table 2).

Multivariable survival analysis of chromosomal aberrations, CNA complexity, and clinical factors

To identify which of the chromosomal aberrations might have an impact on OS, multivariable survival analyses were applied to all 61 patients incorporating the significant clinical factors (histology, and age), CNA complexity, as well as 75 different chromosomal gains and 75 different chromosomal losses in a stepwise approach, respectively. These analyses finally revealed that young age (≤ 2.5 years), histology (CNS-PNET), and recurrent gains of 3p1 (n=3; 5%), 13q1 (n=5; 8.2%), and 15q2 (n=8; 13.1%) are associated with an increased risk for unfavorable OS (Table 3).
Discussion

Over the last years, whole genome/transcriptome molecular analysis has led to the identification of divergent biological characteristics in what were considered single cancer types. In the field of pediatric neuro-oncology, medulloblastoma are now considered as a group of biologically differing entities consisting of at least 4 molecular subgroups, loosely connected through their topography (cerebellum) and partially overlapping histological appearance [34-42].

Molecular studies in rare tumor entities are severely limited due to the low number of cases included in single series, as well as conceptual and technical heterogeneity of the studies. To our knowledge, our study is the first IPD meta-analysis assessing the genomic and clinical features in CNS-PNET and tumors of the pineal region and their impact on OS. In this study, we show that CNS-PNET and pineoblastoma are divergent in their CNA profiles when compared with low grade tumors of the pineal region. For the cases analyzed here, recurring CNA observed only in low grade tumors of the pineal region were e.g. gains on 4q2, 9p, 12p, and 8q2 as well as deletions of chromosome 10. In contrast, recurring CNA only found in pineoblastoma were deletions on 4q, chromosome 9, and 1p3. Based on our results, CGH analysis might be of help - in addition to neuroradiological and histopathological evaluation – to differentiate between CNS-PNET, pineoblastoma, and lower WHO grade tumors of the pineal region. While detection of the listed aberrations may be indicative for assignment to one of the diagnostic groups, development of a CNA-based classifier will ideally require larger numbers of genome profiles.

We found evidence that younger age at time of diagnosis is a negative prognostic factor for OS, confirming several previous studies reporting on poor outcome of
young children with CNS-PNET/pineoblastoma [3, 43]. Timmermann and colleagues report on OS and progression-free survival rates after 3 years of 17.2% and 14.9%, respectively [3]. Administration of radiotherapy was the only significant prognostic marker (15 out of 29 patients were not irradiated) in this study [3] suggesting that omitting the radiotherapy in young children – with the goal to reduce neurologic sequelae – might at least explain partly the extremely poor outcome of young children with CNS-PNET/pineoblastoma.

In our cohorts, CNS-PNET and pineoblastoma shared an unfavorable prognosis. Small numbers of pineoblastoma (3 out of 61 patients) may limit the comparison of those two tumor entities. Based on the literature, there is some evidence that patients with pineoblastoma may do better than patients with CNS-PNET [44-45]. Patients with low grade tumors of the pineal region had a favorable outcome (7-year OS: 87.5% ± 12%) confirming that those tumor entities need a less aggressive treatment than CNS-PNET/pineoblastoma.

CNS-PNET and tumors of the pineal region share a complex karyotype with frequent CNAs [46]. In our series of 107 patients, low grade tumors of the pineal region showed relative frequently absence of CNAs (4/13), less frequently in pineoblastoma (1/6), and CNS-PNET (2/88).

Recently, a new entity of CNS-PNET termed ETMR has been suggested for a subgroup of CNS-PNET (ependymoblastoma and ETANTR) for which amplification at 19q13.42 represents a rather sensitive and specific marker [32]. Korshunov et al. [33] identified in the great majority of ependymoblastoma and ETANTR the focal amplification at 19q13.42 whereas such an amplification was not observed in a large series of other pediatric brain tumors [32]. As we report about cCGH and aCGH data, the frequency of tumors with amplification at 19q13.42 (Supplementary Fig. 6)
should be interpreted with caution as detection of the amplification at 19q13.42 might be missed when tumors are profiled by conventional cCGH which has a spatial resolution limited of several megabases. Patients with 19q13.42 amplified tumors had a relatively poor OS (6/7 patients with available follow-up died of disease). Of note, the analysis of the prognostic impact of the amplification at 19q13.42 is limited in our cohort, because – as mentioned above – this amplification might be missed in tumors analyzed with cCGH.

Our results provide evidence that high CNA complexity is an unfavorable prognostic marker in our cohort. Because of high frequencies of genomic imbalances as well as heterogeneous patterns and frequencies of CNAs, CNA complexity appears to be a good measure for overall genomic instability which may reflect aggressiveness of a certain tumor. In light of this, specific recurrent genomic imbalances which have been identified as CNAs with potential impact on OS in our analyses (e.g. in the 61 patients: gain of seg3p1 (n=3), seg13q3 (n=5), seg15q2 (n=8)), need to be validated – ideally in large future studies - for their prognostic value.

After the search cut-off date imposed by the IPD meta-analysis criteria, another study was published recently focusing on CNS-PNET/pineoblastoma only in pediatric patients [17]. By evaluating the genomic array data which are available from NCBI’s Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/; accession number GSE12370), we were able to generate CNA profiles for 38 patients (8 of whom had pineoblastoma, and 30 had a CNS-PNET; CGH data from 35 CNS-PNET cases were listed, 5 recurrent tumors were paired with a primary sample from the same patient) and 1 CNS PNET cell line. Here, as in our IPD meta-analysis, pineoblastoma exhibited CNA profiles roughly comparable to subsets of cases identified as CNS-PNET as shown in the Supplementary Figure 5 a, b.
The approach of an IPD meta-analysis – a specific method of systematic review based on a systematic search - is in our opinion both necessary and efficient to increase the patient number in rare tumor diseases. By using IPD we may overcome many of the limitations of systematic reviews (e.g. poor quality of data can be improved by updating the information). We used common inclusion and exclusion criteria for each individual case. In addition, we have performed a quality assessment of genomic data by reassessment of each individual case by two researchers (MB and HC). Methods to assess genomic CNAs are standardized and reproducible as demonstrated in previous reports (e.g. [11-12]). Moreover, by including unpublished data [25], we aimed to reduce the risk for publication bias [20]. Of course, the inclusion of a larger number of unpublished cases would have been desirable and a “pooling” of such data has an exceptional value for rare diseases. Of note, IPD meta-analyses usually takes longer than conventional systematic review, and obtaining IPD is time-consuming [20]. Therefore, it is not possible to include all very recent studies, and many IPD meta-analyses are conducted on a cyclical basis with data collection, quality assessment, analyses and dissemination of results taking place every few years [18], because by the time of the final analysis of the pooled data already new cases are available. We acknowledge some limitations of our study which is based on original data produced over a time period of several years. As shown in Supplementary Table 1, the WHO classification of tumors of the CNS has changed during this period. Moreover, in the recent years the staging has improved, as have surgical procedures and non-surgical treatment options of patients with CNS-PNET and tumors of the pineal region. Regarding genomic analysis methods, high-resolution profiling by genomic copy number arrays or whole genome sequencing could provide a higher sensitivity for the detection of hitherto undetected CNA. However, the main limitations in identifying
robust CNA markers with prognostic value are in the limited number of samples and associated clinical datasets available for such analyses.

In summary, CNS-PNET and low grade tumors of the pineal region are characterized by differences in CNA profiles. In this respect, pineoblastoma fit readily into the genomically heterogeneous group of CNS-PNET with a complex karyotype. Although not necessarily displayed by each individual case, typical CNA profiles underline the differing biological background of these entities. Our results provide evidence that young age, high CNA complexity, and potentially also several specific CNAs may have an impact on OS.

Competing interests

The author(s) declare that they have no competing interests.

Acknowledgements

We are indebted to the authors of articles, who provided the data to this study that otherwise would not have been accessible. In particular we would like to thank the following researcher/clinicians for their help: Milo Puhan, Carolyn Russo, Wolfram Scheurlen, Barbara Schütz, Christine Haberler, Martin McCabe, and Hans-Hermann Dubben. We would like to thank Klaus-Dieter Papke for assisting the literature search. We acknowledge the following sources of funding: German Children’s Cancer Foundation/Deutsche Kinderkrebsstiftung (to AOVB, SR). Haoyang Cai is supported through a grant from the China Scholarship Council.
References

Stewart LA, Tierney JF (2002) To IPD or not to IPD? Advantages and disadvantages of systematic reviews using individual patient data. Eval Health Prof 25: 76-97

Boerma EG, Siebert R, Kluin PM, Baudis M (2009) Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical
review of cytogenetics in the light of today’s knowledge. Leukemia 23: 225-234

medulloblastoma comprises three major molecular variants. J Clin Oncol 29: 2717-2723

Figure legends

Fig. 1 Delineation of 3 distinct clinicogenetic subgroups

a Regional copy number imbalances for individual cases were plotted separately by overall diagnostic assignment (yellow: gain; blue: loss; blue: tumors of the pineal region except pineoblastoma; light blue: pineoblastoma; pink: central primitive neuroectodermal tumors (CNS-PNET)). Individual profiles were arranged by hierarchical clustering inside their groups. b Histograms of genomic gain and loss frequencies (color legend corresponding to (a)).
Table 1 Demographics and disease characteristics of 61 patients with Central Primitive Neuroectodermal Tumors (CNS-PNET) and Tumors of the Pineal Region

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Number of patients (complete follow-up; n=61)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>21 (21%)</td>
</tr>
<tr>
<td>Female</td>
<td>17 (28%)</td>
</tr>
<tr>
<td>N/A</td>
<td>31 (51%)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Median age at diagnosis (range; years)</td>
<td>4.2 (0.6-66)</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
</tr>
<tr>
<td>CNS-PNET</td>
<td>46 (75%)</td>
</tr>
<tr>
<td>Tumors of the pineal region</td>
<td>15 (25%)</td>
</tr>
<tr>
<td>Tumor samples source</td>
<td></td>
</tr>
<tr>
<td>Primary tumors</td>
<td>59 (97%)</td>
</tr>
<tr>
<td>Relapses</td>
<td>2 (4%)</td>
</tr>
<tr>
<td>Metastatic stage</td>
<td></td>
</tr>
<tr>
<td>Metastases</td>
<td>8 (13%)</td>
</tr>
<tr>
<td>No metastases</td>
<td>21 (35%)</td>
</tr>
<tr>
<td>N/A</td>
<td>32 (52%)</td>
</tr>
</tbody>
</table>

N/A, information not available
Table 2 Multivariable analyses of clinical prognostic factors (n=61) for overall survival (OS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comparison</th>
<th>Sample size</th>
<th>HR OS</th>
<th>95% Confidence interval (CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology</td>
<td>Non CNS-PNET</td>
<td>15</td>
<td>0.312</td>
<td>0.109-0.891</td>
<td>0.0296</td>
</tr>
<tr>
<td></td>
<td>CNS-PNET</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age group (years)</td>
<td>> 2.5</td>
<td>46</td>
<td>0.386</td>
<td>0.197-0.757</td>
<td>0.0056</td>
</tr>
<tr>
<td></td>
<td>≤ 2.5</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNA complexity</td>
<td>≥ 11 CNA</td>
<td>23</td>
<td>1.790</td>
<td>0.943-3.400</td>
<td>0.0752</td>
</tr>
<tr>
<td></td>
<td>< 11 CNA</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CNS-PNET, Central primitive neuroectodermal tumor; Non CNS-PNET, tumors of the pineal region; CNA, copy number aberrations; HR OS, Hazard ratio overall survival
Table 3 Multivariable analyses of clinical factors and recurrent chromosomal aberrations (forward stepwise selection; n=61) for overall survival (OS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>sample size</th>
<th>Hazard ratio overall survival (OS)</th>
<th>95% Confidence interval (CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (≥ 2.5 years)</td>
<td>46</td>
<td>0.295</td>
<td>0.141-0.619</td>
<td>0.0012</td>
</tr>
<tr>
<td>Histology (tumor of the pineal region)</td>
<td>15</td>
<td>0.120</td>
<td>0.029-0.498</td>
<td>0.0048</td>
</tr>
<tr>
<td>seg3p1_gain</td>
<td>3</td>
<td>8.759</td>
<td>1.778-43.159</td>
<td>0.0077</td>
</tr>
<tr>
<td>seg13q3_gain</td>
<td>5</td>
<td>4.128</td>
<td>1.192-14.303</td>
<td>0.0253</td>
</tr>
<tr>
<td>seg15q2_gain</td>
<td>8</td>
<td>4.338</td>
<td>1.614-11.665</td>
<td>0.0036</td>
</tr>
</tbody>
</table>
Supplementary Table 1 WHO Classification of Tumors of the Nervous System 1993-2007: Embryonal Tumors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medulloblastoma</td>
<td>Medulloblastoma</td>
<td>Medulloblastoma</td>
<td>Medulloblastoma</td>
</tr>
<tr>
<td>Medulomyoblastoma</td>
<td>Medulomyoblastoma</td>
<td>Medulomyoblastoma</td>
<td>Desmoplastic / nodular MB</td>
</tr>
<tr>
<td>Melanotic MB</td>
<td>Melanotic MB</td>
<td>Melanotic MB</td>
<td>MB with extensive nodularity</td>
</tr>
<tr>
<td>Desmoplastic MB</td>
<td>Desmoplastic MB</td>
<td>MB with extensive nodularity</td>
<td>Large cell MB</td>
</tr>
<tr>
<td></td>
<td>Large cell MB</td>
<td></td>
<td>Anaplastic MB</td>
</tr>
<tr>
<td></td>
<td>Lipomatous MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primitive neuroectodermal tumor (PNET)</td>
<td>Supratentorial PNET (sPNET)</td>
<td>Supratentorial PNET (sPNET) Neuroblastoma Ganglio-neuroblastoma</td>
<td>CNS-PNET CNS Neuroblastoma CNS Ganglio-neuroblastoma Medulloepithelioma Ependymoblastoma</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>Central neuroblastoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganglio-neuroblastoma</td>
<td>Ganglio-neuroblastoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medulloepithelioma</td>
<td>Medulloepithelioma</td>
<td>Medulloepithelioma</td>
<td></td>
</tr>
<tr>
<td>Ependymoblastoma</td>
<td>Ependymoblastoma</td>
<td>Ependymoblastoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atypical teratoid/rhabdoid tumor</td>
<td>Atypical teratoid/rhabdoid tumor</td>
<td>Atypical teratoid/rhabdoid tumor</td>
</tr>
</tbody>
</table>

MB, medulloblastoma; CNS, Central nervous system; PNET, primitive neuroectodermal tumor
Supplementary Table 2: Overall survival (OS) according to clinical factors and CNA complexity, univariable analyses on 61 patients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comparison</th>
<th>Sample size</th>
<th>7-year OS (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology</td>
<td>CNS-PNET</td>
<td>46</td>
<td>22.9</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Non CNS-PNET</td>
<td>15</td>
<td>64.7</td>
<td></td>
</tr>
<tr>
<td>Age group (years)</td>
<td>≤ 2.5</td>
<td>15</td>
<td>0.0</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>> 2.5</td>
<td>46</td>
<td>41.3</td>
<td></td>
</tr>
<tr>
<td>CNA complexity</td>
<td>< 11 CNA</td>
<td>38</td>
<td>39.9</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>≥ 11 CNA</td>
<td>23</td>
<td>19.6</td>
<td></td>
</tr>
</tbody>
</table>

CNS-PNET, Central primitive neuroectodermal tumor; Non CNS-PNET, tumors of the pineal region; CNA, copy number aberrations; OS, overall survival
Supplementary Figure legends

Supplementary Fig. 1 Flow chart of study selection process.
CNS, Central nervous system; PNET, primitive neuroectodermal tumor

Supplementary Fig. 2 Overall imbalance frequencies in 107 tumors of different histological classifications (low grade tumors of the pineal region, n=13; pineoblastoma, n=6; CNS-PNET, n=88)

a Histogram: green/up: percent of cases with copy number gain in corresponding region; red/down: percent of cases with losses. b Gain/loss profile overview: comparison of the normalized gain/loss frequencies for the different entities (i.e. the highest value for either gain or loss leads to a maximum color intensity of the respective green or red color channel)

Supplementary Fig. 3 International Classification of Diseases (ICD) mapped subset profiles for CNS-PNET and pineoblastoma

a CNS-PNET, NOS tumors (ICD-O 9473/3; 77 cases). b Ependymoblastoma (ICD-O 9392/3; 9 cases). c Medulloepithelioma (ICD-O 9501/3; 2 cases). d Pineoblastoma (ICD-O 9362/3; 6 cases).
Supplementary Fig. 4 International Classification of Diseases (ICD)
mapped subset profiles for low grade tumors of the pineal region

- Papillary tumors of the pineal region (ICD-O 9395/3; 5 cases).
- Pineal parenchymal tumors of intermediate differentiation (ICD-O 9362/3; 3 cases).
- Pineocytoma (ICD-O 9361/1; 5 cases)

Supplementary Fig. 5 Comparison dataset (Miller et al. [17], PMID 21798848)

- Case specific gain/loss regions sorted for 8 pineoblastoma and 31 CNS-PNET cases (one cell line) extracted from PMID 21798848.
- Frequency profiles of the case groups in Supplementary Figure 4A.

Supplementary Fig. 6 Focal amplification at chromosome 19q

- Gains (yellow)/losses (blue) in 9 cases with focal amplification at 19q1.

Remarkably, 8/9 cases also display gains of at least parts of chromosome 2, a feature observed also in a subset of other CNS-PNET tumors.

- Three example plots of the amplified region on chromosome 19q1, generated from data available through the GEO deposit GSE14087 (Li et al. [2], PMID 19962671). Of note is the apparently complex structure of the region in GSM353483 and GSM353447.
MEDLINE, PubMed, and EMBASE searched from January, 1992, to July, 2010
Potentially relevant studies n=1220

After duplicates removed n=840

Excluded by title and abstract review n=710

Full copies retrieved and assessed for eligibility n=130

Excluded, not eligible for this study n=115

Studies included in meta-analysis (n=15, 104 patients)

Study identified from contact with experts (3 unpublished CNS-PNET)

Studies included in meta-analysis (n=16, 107 patients (exclusion of 4 cases); 61 patients with information about overall survival)
Figure S2a

CNS-FNET and tumors of the pineal region (107 cases)

Figure S2b
Figure S3a

CNS-PNET and tumors of the pinealis region (primitive neuroectodermal tumor, nos, 77 cases)

Figure S3b

CNS-PNET and tumors of the pinealis region (ependymoblastoma, 9 cases)
Figure S3c

CNS-PNET and tumors of the pineal region (medulloblastoma, nos, 2 cases)

Figure S3d

CNS-PNET and tumors of the pineal region (pineoblastoma, 6 cases)
Figure S5a

Figure S5b

primitive neuroectodermal tumors, nos

pineoblastomas

immature CNS-PNET tumors / "blastomas"