UZH-Logo

Maintenance Infos

Automated quantification of synapses by fluorescence microscopy


Schätzle, Philipp; Wuttke, René; Ziegler, Urs; Sonderegger, Peter (2012). Automated quantification of synapses by fluorescence microscopy. Journal of Neuroscience Methods, 204(1):144-149.

Abstract

The quantification of synapses in neuronal cultures is essential in studies of the molecular mechanisms underlying synaptogenesis and synaptic plasticity. Conventional counting of synapses based on morphological or immunocytochemical criteria is extremely work-intensive. We developed a fully automated method which quantifies synaptic elements and complete synapses based on immunocytochemistry. Pre- and postsynaptic elements are detected by their corresponding fluorescence signals and their proximity to dendrites. Synapses are defined as the combination of a pre- and postsynaptic element within a given distance. The analysis is performed in three dimensions and all parameters required for quantification can be easily adjusted by a graphical user interface. The integrated batch processing enables the analysis of large datasets without any further user interaction and is therefore efficient and timesaving. The potential of this method was demonstrated by an extensive quantification of synapses in neuronal cultures from DIV 7 to DIV 21. The method can be applied to all datasets containing a pre- and postsynaptic labeling plus a dendritic or cell surface marker.

Abstract

The quantification of synapses in neuronal cultures is essential in studies of the molecular mechanisms underlying synaptogenesis and synaptic plasticity. Conventional counting of synapses based on morphological or immunocytochemical criteria is extremely work-intensive. We developed a fully automated method which quantifies synaptic elements and complete synapses based on immunocytochemistry. Pre- and postsynaptic elements are detected by their corresponding fluorescence signals and their proximity to dendrites. Synapses are defined as the combination of a pre- and postsynaptic element within a given distance. The analysis is performed in three dimensions and all parameters required for quantification can be easily adjusted by a graphical user interface. The integrated batch processing enables the analysis of large datasets without any further user interaction and is therefore efficient and timesaving. The potential of this method was demonstrated by an extensive quantification of synapses in neuronal cultures from DIV 7 to DIV 21. The method can be applied to all datasets containing a pre- and postsynaptic labeling plus a dendritic or cell surface marker.

Citations

6 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 09 Oct 2012
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry

04 Faculty of Medicine > Center for Microscopy and Image Analysis
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:09 Oct 2012 15:32
Last Modified:05 Apr 2016 15:59
Publisher:Elsevier
ISSN:0165-0270
Publisher DOI:https://doi.org/10.1016/j.jneumeth.2011.11.010
PubMed ID:22108140

Download

[img]
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations