UZH-Logo

Maintenance Infos

From molten salts to room temperature ionic liquids: Simulation studies on chloroaluminate systems


Salanne, Mathieu; Siqueira, Leonardo J A; Seitsonen, Ari P; Madden, Paul A; Kirchner, Barbara (2012). From molten salts to room temperature ionic liquids: Simulation studies on chloroaluminate systems. Faraday Discussions, 154:171-188.

Abstract

An interaction potential including chloride anion polarization effects, constructed from first-principles calculations, is used to examine the structure and transport properties of a series of chloroaluminate melts. A particular emphasis was given to the study of the equimolar mixture of aluminium chloride with 1-ethyl-3-methylimidazolium chloride, which forms a room temperature ionic liquid EMI+-AlCl4-. The structure yielded by the classical simulations performed within the framework of the polarizable ion model is compared to the results obtained from entirely electronic structure-based simulations: An excellent agreement between the two flavors of molecular dynamics is observed. When changing the organic cation EMI+ by an inorganic cation with a smaller ionic radius (Li+, Na+, K+), the chloroaluminate speciation becomes more complex, with the formation of Al2Cl7- in small amounts. The calculated transport properties (diffusion coefficients, electrical conductivity and viscosity) of EMI+-AlCl4- are in good agreement with experimental data.

An interaction potential including chloride anion polarization effects, constructed from first-principles calculations, is used to examine the structure and transport properties of a series of chloroaluminate melts. A particular emphasis was given to the study of the equimolar mixture of aluminium chloride with 1-ethyl-3-methylimidazolium chloride, which forms a room temperature ionic liquid EMI+-AlCl4-. The structure yielded by the classical simulations performed within the framework of the polarizable ion model is compared to the results obtained from entirely electronic structure-based simulations: An excellent agreement between the two flavors of molecular dynamics is observed. When changing the organic cation EMI+ by an inorganic cation with a smaller ionic radius (Li+, Na+, K+), the chloroaluminate speciation becomes more complex, with the formation of Al2Cl7- in small amounts. The calculated transport properties (diffusion coefficients, electrical conductivity and viscosity) of EMI+-AlCl4- are in good agreement with experimental data.

Citations

23 citations in Web of Science®
21 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 21 Jan 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2012
Deposited On:21 Jan 2013 13:06
Last Modified:05 Apr 2016 15:59
Publisher:Royal Society of Chemistry (RSC)
ISSN:1359-6640
Publisher DOI:https://doi.org/10.1039/c1fd00053e
Other Identification Number:ISI:000297514300012
Permanent URL: https://doi.org/10.5167/uzh-65268

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 598kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations