UZH-Logo

Maintenance Infos

How Does Darunavir Prevent HIV-1 Protease Dimerization?


Huang, Danzhi; Caflisch, Amedeo (2012). How Does Darunavir Prevent HIV-1 Protease Dimerization? Journal of Chemical Theory and Computation, 8(5):1786-1794.

Abstract

The drug Darunavir (DRV) is a potent inhibitor of HIV-1 protease (PR), a homodimeric essential enzyme of the AIDS virus. Recent experimental data suggest that DRV is able to prevent dimerization of HIV-1 PR, which, together with its high affinity for the mature enzyme, has been linked to the high genetic barrier to the development of viral resistance. The mechanism of dimerization inhibition and the binding mode(s) of DRV to monomeric HIV-1 PR are unknown. Here, multiple molecular dynamics simulations with explicit solvent (for a total of 11 μs with the CHARMM force field and 1 μs with the Amber force field) show that the monomer of HIV-1 PR is structurally stable and reveal a major binding mode of DRV. This binding mode is stabilized by favorable interactions between the apolar groups of DRV and the hydrophobic residues Ile32, Ile47, Ile50, Ile54, Pro79, Val82, and Ile84. The binding mode to monomeric HIV-1 PR identified by molecular dynamics is different from the two binding modes observed in the crystal structure of the complex with dimeric HIV-1 PR. As an example, there are no interactions between DRV and the catalytic Asp25 in the binding mode to monomeric HIV-1 PR revelead by the simulations. In contrast, the simulations show extensive and stable interactions between DRV and the flap (residues 46−55), which are likely to sterically hinder the formation of the flap interface as observed in the dimeric structure. Which of the two mechanisms of inhibition (dimerization inhibition by association with the flap or binding to the active site of the mature enzyme) dominates might depend on the HIV-1 PR mutations, and it is likely that dimerization inhibition is predominant for multiple mutations at the active site in multidrug resistant strains.

The drug Darunavir (DRV) is a potent inhibitor of HIV-1 protease (PR), a homodimeric essential enzyme of the AIDS virus. Recent experimental data suggest that DRV is able to prevent dimerization of HIV-1 PR, which, together with its high affinity for the mature enzyme, has been linked to the high genetic barrier to the development of viral resistance. The mechanism of dimerization inhibition and the binding mode(s) of DRV to monomeric HIV-1 PR are unknown. Here, multiple molecular dynamics simulations with explicit solvent (for a total of 11 μs with the CHARMM force field and 1 μs with the Amber force field) show that the monomer of HIV-1 PR is structurally stable and reveal a major binding mode of DRV. This binding mode is stabilized by favorable interactions between the apolar groups of DRV and the hydrophobic residues Ile32, Ile47, Ile50, Ile54, Pro79, Val82, and Ile84. The binding mode to monomeric HIV-1 PR identified by molecular dynamics is different from the two binding modes observed in the crystal structure of the complex with dimeric HIV-1 PR. As an example, there are no interactions between DRV and the catalytic Asp25 in the binding mode to monomeric HIV-1 PR revelead by the simulations. In contrast, the simulations show extensive and stable interactions between DRV and the flap (residues 46−55), which are likely to sterically hinder the formation of the flap interface as observed in the dimeric structure. Which of the two mechanisms of inhibition (dimerization inhibition by association with the flap or binding to the active site of the mature enzyme) dominates might depend on the HIV-1 PR mutations, and it is likely that dimerization inhibition is predominant for multiple mutations at the active site in multidrug resistant strains.

Citations

10 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 09 Nov 2012
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:09 Nov 2012 08:47
Last Modified:05 Apr 2016 16:00
Publisher:American Chemical Society
ISSN:1549-9618
Publisher DOI:https://doi.org/10.1021/ct300032r
Permanent URL: https://doi.org/10.5167/uzh-65541

Download

[img]
Filetype: PDF - Registered users only
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations