Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-66004

VandeVondele, J; Borštnik, U; Hutter, J (2012). Linear scaling self-consistent field calculations with millions of atoms in the condensed phase. Journal of Chemical Theory and Computation, 8(10):3565-3573.

Accepted Version


In this work, the applicability and performance of a linear scaling algorithm is investigated for three-dimensional condensed phase systems. A simple but robust approach based on the matrix sign function is employed together with a thresholding matrix multiplication that does not require a prescribed sparsity pattern. Semiempirical methods and density functional theory have been tested. We demonstrate that self-consistent calculations with 1 million atoms are feasible for simple systems. With this approach, the computational cost of the calculation depends strongly on basis set quality. In the current implementation, high quality calculations for dense systems are limited to a few hundred thousand atoms. We report on the sparsities of the involved matrices as obtained at convergence and for intermediate iterations. We investigate how determining the chemical potential impacts the computational cost for very large systems.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
DDC:540 Chemistry
Deposited On:06 Nov 2012 16:07
Last Modified:08 Jun 2014 05:22
Publisher:American Chemical Society
Publisher DOI:10.1021/ct200897x
Related URLs:http://www.scopus.com/inward/record.url?eid=2-s2.0-84867384854&partnerID=40&md5=655b5271576e9934b8d00b2013a7dc2b
Citations:Web of Science®. Times Cited: 19
Google Scholar™
Scopus®. Citation Count: 23

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page