UZH-Logo

Maintenance Infos

Neurobin/TMPRSS11c, a novel type II transmembrane serine protease that cleaves fibroblast growth factor-2 in vitro


Stallmach, R; Gloor, S M (2008). Neurobin/TMPRSS11c, a novel type II transmembrane serine protease that cleaves fibroblast growth factor-2 in vitro. Biochemical Journal, 412(1):81-91.

Abstract

TTSPs [type II TMPRSSs (transmembrane serine proteases)] are a growing family of trypsin-like enzymes with, in some cases, restricted tissue distribution. To investigate the expression of TTSPs in the nervous system, we performed a PCR-based screening approach with P10 (postnatal day 10) mouse spinal cord mRNA. We detected the expression of five known TTSPs and identified a novel TTSP, which we designated neurobin. Neurobin consists of 431 amino acids. In the extracellular part, neurobin contains a single SEA (sea-urchin sperm protein, enterokinase and agrin) domain and a C-terminal serine protease domain. RT-PCR (reverse transcription-PCR) analysis indicated the expression of neurobin in spinal cord and cerebellum. Histochemical analysis of brain sections revealed distinct staining of Purkinje neurons of the cerebellum. Transiently overexpressed neurobin was autocatalytically processed and inserted into the plasma membrane. Autocatalytic activation could be suppressed by mutating Ser(381) in the catalytic pocket to an alanine residue. The protease domain of neurobin, produced in Escherichia coli and refolded from inclusion bodies, cleaved chromogenic peptides with an arginine residue in position P(1). Serine protease inhibitors effectively suppressed the proteolytic activity of recombinant neurobin. Ca2+ or Na+ ions did not significantly modulate the catalytic activity of the protease. Recombinant neurobin processed 17-kDa FGF-2 (fibroblast growth factor-2) at several P(1) lysine and arginine positions to distinct fragments, in a heparin-inhibitable manner, but did not cleave FGF-7, laminin or fibronectin. These results indicate that neurobin is an authentic TTSP with trypsin-like activity and is able to process FGF-2 in vitro.

Abstract

TTSPs [type II TMPRSSs (transmembrane serine proteases)] are a growing family of trypsin-like enzymes with, in some cases, restricted tissue distribution. To investigate the expression of TTSPs in the nervous system, we performed a PCR-based screening approach with P10 (postnatal day 10) mouse spinal cord mRNA. We detected the expression of five known TTSPs and identified a novel TTSP, which we designated neurobin. Neurobin consists of 431 amino acids. In the extracellular part, neurobin contains a single SEA (sea-urchin sperm protein, enterokinase and agrin) domain and a C-terminal serine protease domain. RT-PCR (reverse transcription-PCR) analysis indicated the expression of neurobin in spinal cord and cerebellum. Histochemical analysis of brain sections revealed distinct staining of Purkinje neurons of the cerebellum. Transiently overexpressed neurobin was autocatalytically processed and inserted into the plasma membrane. Autocatalytic activation could be suppressed by mutating Ser(381) in the catalytic pocket to an alanine residue. The protease domain of neurobin, produced in Escherichia coli and refolded from inclusion bodies, cleaved chromogenic peptides with an arginine residue in position P(1). Serine protease inhibitors effectively suppressed the proteolytic activity of recombinant neurobin. Ca2+ or Na+ ions did not significantly modulate the catalytic activity of the protease. Recombinant neurobin processed 17-kDa FGF-2 (fibroblast growth factor-2) at several P(1) lysine and arginine positions to distinct fragments, in a heparin-inhibitable manner, but did not cleave FGF-7, laminin or fibronectin. These results indicate that neurobin is an authentic TTSP with trypsin-like activity and is able to process FGF-2 in vitro.

Citations

8 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 18 Dec 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:15 May 2008
Deposited On:18 Dec 2008 07:35
Last Modified:05 Apr 2016 12:37
Publisher:Portland Press
ISSN:0264-6021
Publisher DOI:https://doi.org/10.1042/BJ20071432
PubMed ID:18215125

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations