UZH-Logo

Maintenance Infos

Effect of Lanz Pressure Regulating Valve on Self-sealing Mechanism and Air Leakage Across the Tracheal Tube Cuffs in a Benchtop Model


Dave, Mital H; Spielmann, Nelly; Mauch, Jacqueline; Weiss, Markus (2013). Effect of Lanz Pressure Regulating Valve on Self-sealing Mechanism and Air Leakage Across the Tracheal Tube Cuffs in a Benchtop Model. Journal of Intensive Care Medicine, 28(4):247-251.

Abstract

Background: The aim of the present study was to investigate the effect of the Lanz system on air sealing by self-inflation in high volume-low pressure (HVLP) tube cuffs. Methods: In vitro tracheal air sealing was studied in HVLP tracheal tube cuffs (internal diameter [ID] 8.0 mm) made from polyurethane ([PU] Seal Guard tracheal tube, Covidien, Athlone, Ireland) and from polyvinylchloride ([PVC] HiLo tracheal tube, Covidien) with and without Lanz pressure regulating valve. Tube cuffs were placed in a vertical 22 mm ID artificial trachea and inflated to 5, 10, 15, 20, 25, or 30 cm H(2)O cuff pressures. Pressure control ventilation with peak inspiratory pressures (PIPs) of 20 or 25 cm H(2)O was applied and air leakage was assessed spirometrically as the ratio of expiratory to inspiratory tidal volumes. Nonparametric Mann-Whitney test was applied to compare the air leakage with and without Lanz system for both cuff types at each cuff pressure and PIP (P < .05). Results: The PVC tube cuffs with Lanz system resulted in significant air leakage at both 20 and 25 cm H(2)O PIP as compared to those without the Lanz system, especially at cuff pressures lower than the preset PIP (P < .05). Although PU tube cuffs with Lanz system showed reduced air sealing when compared with cuffs without Lanz, the difference was not statistically significant. Conclusion: Cuff pressure compensation with the Lanz system during cyclic respiratory pressure changes interferes with the self-sealing mechanism in HVLP tube cuffs at cuff pressures lower than PIP level. This results in larger air leak across tube cuffs particularly in tube cuffs made from PVC.

Background: The aim of the present study was to investigate the effect of the Lanz system on air sealing by self-inflation in high volume-low pressure (HVLP) tube cuffs. Methods: In vitro tracheal air sealing was studied in HVLP tracheal tube cuffs (internal diameter [ID] 8.0 mm) made from polyurethane ([PU] Seal Guard tracheal tube, Covidien, Athlone, Ireland) and from polyvinylchloride ([PVC] HiLo tracheal tube, Covidien) with and without Lanz pressure regulating valve. Tube cuffs were placed in a vertical 22 mm ID artificial trachea and inflated to 5, 10, 15, 20, 25, or 30 cm H(2)O cuff pressures. Pressure control ventilation with peak inspiratory pressures (PIPs) of 20 or 25 cm H(2)O was applied and air leakage was assessed spirometrically as the ratio of expiratory to inspiratory tidal volumes. Nonparametric Mann-Whitney test was applied to compare the air leakage with and without Lanz system for both cuff types at each cuff pressure and PIP (P < .05). Results: The PVC tube cuffs with Lanz system resulted in significant air leakage at both 20 and 25 cm H(2)O PIP as compared to those without the Lanz system, especially at cuff pressures lower than the preset PIP (P < .05). Although PU tube cuffs with Lanz system showed reduced air sealing when compared with cuffs without Lanz, the difference was not statistically significant. Conclusion: Cuff pressure compensation with the Lanz system during cyclic respiratory pressure changes interferes with the self-sealing mechanism in HVLP tube cuffs at cuff pressures lower than PIP level. This results in larger air leak across tube cuffs particularly in tube cuffs made from PVC.

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Clinic for Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:09 Nov 2012 11:18
Last Modified:05 Apr 2016 16:03
Publisher:Sage Publications
ISSN:0885-0666
Publisher DOI:https://doi.org/10.1177/0885066612452847
PubMed ID:22833049

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations