UZH-Logo

Maintenance Infos

Use of molecular ratios to identify changes in fatty acid composition of Miscanthus×giganteus (Greef et Deu.) plant tissue, rhizosphere and root-free soil during a laboratory experiment


Wiesenberg, Guido L B; Schneckenberger, K; Schwark, L; Kuzyakov, Y (2012). Use of molecular ratios to identify changes in fatty acid composition of Miscanthus×giganteus (Greef et Deu.) plant tissue, rhizosphere and root-free soil during a laboratory experiment. Organic Geochemistry, 46:1-11.

Abstract

Fatty acids (FAs) are abundant lipids in plants, microorganisms and soil. Depending on chain length they provide potential for evaluating different sources of C in soil: shoots, roots and microorganisms. This, together with their fast turnover and transformation in living and decaying plant tissues, suggests the use of FA molecular ratios as source indicators in soil. To evaluate the applicability of FAs as source indicators, their dynamics in plant tissue and soil were traced during a laboratory experiment using the highly productive perennial C4 energy grass Miscanthus x giganteus (Greef et Deu.). For the comprehensive use of FAs as source indicators various ratios were calculated: fatty acid ratio (originally defined as carboxylic acid ratio: CAR), carbon preference index (CPI), average chain length (ACL) and unsaturated vs. saturated C18 acids. The FA composition was specific for individual plant tissues as indicated by the CAR, with high values in roots and lower ones in the above ground plant tissue. Based on ACL values of rhizosphere, soil and roots, an enrichment in root derived FAs vs. root-free soil could be estimated. The rhizosphere contained 35–70% more plant derived FAs than root-free soil. The ACL showed potential for estimating root derived carbon in the rhizosphere. The study documents for the first time very fast spatial processes in soil related to plant growth, thereby strongly influencing the FA composition of soil.

Fatty acids (FAs) are abundant lipids in plants, microorganisms and soil. Depending on chain length they provide potential for evaluating different sources of C in soil: shoots, roots and microorganisms. This, together with their fast turnover and transformation in living and decaying plant tissues, suggests the use of FA molecular ratios as source indicators in soil. To evaluate the applicability of FAs as source indicators, their dynamics in plant tissue and soil were traced during a laboratory experiment using the highly productive perennial C4 energy grass Miscanthus x giganteus (Greef et Deu.). For the comprehensive use of FAs as source indicators various ratios were calculated: fatty acid ratio (originally defined as carboxylic acid ratio: CAR), carbon preference index (CPI), average chain length (ACL) and unsaturated vs. saturated C18 acids. The FA composition was specific for individual plant tissues as indicated by the CAR, with high values in roots and lower ones in the above ground plant tissue. Based on ACL values of rhizosphere, soil and roots, an enrichment in root derived FAs vs. root-free soil could be estimated. The rhizosphere contained 35–70% more plant derived FAs than root-free soil. The ACL showed potential for estimating root derived carbon in the rhizosphere. The study documents for the first time very fast spatial processes in soil related to plant growth, thereby strongly influencing the FA composition of soil.

Citations

6 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 20 Nov 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2012
Deposited On:20 Nov 2012 14:14
Last Modified:05 Apr 2016 16:05
Publisher:Elsevier
ISSN:0146-6380
Publisher DOI:https://doi.org/10.1016/j.orggeochem.2012.01.010
Permanent URL: https://doi.org/10.5167/uzh-66799

Download

[img]
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations