UZH-Logo

Maintenance Infos

Symmetric Jacobian for local Lyapunov exponents and Lyapunov stability analysis revisited


Waldner, Franz; Klages, Rainer (2012). Symmetric Jacobian for local Lyapunov exponents and Lyapunov stability analysis revisited. Chaos, Solitons & Fractals, 45(3):325-340.

Abstract

The stability analysis introduced by Lyapunov and extended by Oseledec provides an excellent tool to describe the character of nonlinear n-dimensional flows by n global exponents if these flows are stationary in time. However, here we discuss two shortcomings: (a) the local exponents fail to indicate the origin of instability where trajectories start to diverge. Instead, their time evolution contains a much stronger chaos than the trajectories, which is only eliminated by integrating over a long time. Therefore, shorter time intervals cannot be characterized correctly, which would be essential to analyse changes of chaotic character as in transients. (b) Although Oseledec uses an n dimensional sphere around a point x to be transformed into an n dimensional ellipse in first order, this local ellipse has not yet been evaluated. The aim of this contribution is to eliminate these two shortcomings. Problem (a) disappears if the Oseledec method is replaced by a frame with a ‘constraint’ as performed by Rateitschak and Klages (RK) [Rateitschak K, Klages R, Lyapunov instability for a periodic Lorentz gas thermostated by deterministic scattering. Phys Rev E 2002;65:036209/1–11]. The reasons why this method is better will be illustrated by comparing different systems. In order to analyze shorter time intervals, integrals between consecutive Poincaré points will be evaluated. The local problem (b) will be solved analytically by introducing the ‘symmetric Jacobian for local Lyapunov exponents’ and its orthogonal submatrix, which enable to search in the full phase space for extreme local separation exponents. These are close to the RK exponents but need no time integration of the RK frame. Finally, four sets of local exponents are compared: Oseledec frame, RK frame, symmetric Jacobian for local Lyapunov exponents and its orthogonal submatrix.

The stability analysis introduced by Lyapunov and extended by Oseledec provides an excellent tool to describe the character of nonlinear n-dimensional flows by n global exponents if these flows are stationary in time. However, here we discuss two shortcomings: (a) the local exponents fail to indicate the origin of instability where trajectories start to diverge. Instead, their time evolution contains a much stronger chaos than the trajectories, which is only eliminated by integrating over a long time. Therefore, shorter time intervals cannot be characterized correctly, which would be essential to analyse changes of chaotic character as in transients. (b) Although Oseledec uses an n dimensional sphere around a point x to be transformed into an n dimensional ellipse in first order, this local ellipse has not yet been evaluated. The aim of this contribution is to eliminate these two shortcomings. Problem (a) disappears if the Oseledec method is replaced by a frame with a ‘constraint’ as performed by Rateitschak and Klages (RK) [Rateitschak K, Klages R, Lyapunov instability for a periodic Lorentz gas thermostated by deterministic scattering. Phys Rev E 2002;65:036209/1–11]. The reasons why this method is better will be illustrated by comparing different systems. In order to analyze shorter time intervals, integrals between consecutive Poincaré points will be evaluated. The local problem (b) will be solved analytically by introducing the ‘symmetric Jacobian for local Lyapunov exponents’ and its orthogonal submatrix, which enable to search in the full phase space for extreme local separation exponents. These are close to the RK exponents but need no time integration of the RK frame. Finally, four sets of local exponents are compared: Oseledec frame, RK frame, symmetric Jacobian for local Lyapunov exponents and its orthogonal submatrix.

Citations

3 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

10 downloads since deposited on 30 Nov 2012
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, not refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2012
Deposited On:30 Nov 2012 13:57
Last Modified:05 Apr 2016 16:06
Publisher:Elsevier
Series Name:Chaos, Solitons & Fractals
ISSN:0960-0779
Publisher DOI:https://doi.org/10.1016/j.chaos.2011.12.014

Download

[img]
Content: Other
Filetype: Other (Video Presentation)
Size: 287MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations