UZH-Logo

Maintenance Infos

Bioassay for hamster macrophage chemotaxis: application to study particle-lung interactions


Geiser, M; Schüpbach, R; Waber, U; Gehr, P (1998). Bioassay for hamster macrophage chemotaxis: application to study particle-lung interactions. Cellular and molecular life sciences : CMLS, 54(2):179-185.

Abstract

Attraction of lung macrophages to particle deposition sites has been demonstrated in different animal species. We reported a threefold increase of the number of macrophages to occur within 40 min after polystyrene particle deposition in hamster airways [Geiser et al. (1994) Am. J. Respir. Cell Mol. Biol. 160: 594-603]. Complement-derived chemotactic activity is one of the mechanisms postulated for macrophage recruitment. It was the aim of this study to test whether complement-derived chemotactic activity is involved in the rapid recruitment of macrophages to the site of deposited polystyrene particles in hamster airways. We first developed an in vitro cell migration assay for hamster macrophages to assess complement-derived chemotaxis. Second, the bronchoalveolar lavage fluids (BALF) of four hamsters that had inhaled aerosols of polystyrene microspheres were tested for chemotactic activity by this bioassay and compared with BALF of four sham-exposed hamsters. Chemotactic response of macrophages was found toward complement-activated hamster serum, whereas macrophage migration was not increased toward BALF of particle and sham-exposed hamsters. In contrast, macrophage migration to BALF of both groups was reduced by 1.6-fold. Thus, the stimulus for macrophage recruitment to the site of deposited polystyrene particles in hamster airways could not be demonstrated using this bioassay.

Abstract

Attraction of lung macrophages to particle deposition sites has been demonstrated in different animal species. We reported a threefold increase of the number of macrophages to occur within 40 min after polystyrene particle deposition in hamster airways [Geiser et al. (1994) Am. J. Respir. Cell Mol. Biol. 160: 594-603]. Complement-derived chemotactic activity is one of the mechanisms postulated for macrophage recruitment. It was the aim of this study to test whether complement-derived chemotactic activity is involved in the rapid recruitment of macrophages to the site of deposited polystyrene particles in hamster airways. We first developed an in vitro cell migration assay for hamster macrophages to assess complement-derived chemotaxis. Second, the bronchoalveolar lavage fluids (BALF) of four hamsters that had inhaled aerosols of polystyrene microspheres were tested for chemotactic activity by this bioassay and compared with BALF of four sham-exposed hamsters. Chemotactic response of macrophages was found toward complement-activated hamster serum, whereas macrophage migration was not increased toward BALF of particle and sham-exposed hamsters. In contrast, macrophage migration to BALF of both groups was reduced by 1.6-fold. Thus, the stimulus for macrophage recruitment to the site of deposited polystyrene particles in hamster airways could not be demonstrated using this bioassay.

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Intensive Care Medicine
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:1998
Deposited On:04 Dec 2012 15:40
Last Modified:05 Apr 2016 16:09
Publisher:Birkhäuser
Series Name:Cellular and Molecular Life Sciences
ISSN:1420-682X
Publisher DOI:https://doi.org/10.1007/s000180050140
PubMed ID:9539961

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations