UZH-Logo

Maintenance Infos

T-cell receptor gene transfer exclusively to human CD8+ cells enhances tumor cell killing


Zhou, Qi; Schneider, Irene C; Edes, Inan; Honegger, Annemarie; Bach, Patricia; Schönfeld, Kurt; Schambach, Axel; Wels, Winfried S; Kneissl, Sabrina; Uckert, Wolfgang; Buchholz, Christian J (2012). T-cell receptor gene transfer exclusively to human CD8+ cells enhances tumor cell killing. Blood, 120(22):4334-4342.

Abstract

Transfer of tumor-specific T-cell receptor (TCR) genes into patient T cells is a promising strategy in cancer immunotherapy. We describe here a novel vector (CD8-LV) derived from lentivirus, which delivers genes exclusively and specifically to CD8(+) cells. CD8-LV mediated stable in vitro and in vivo reporter gene transfer as well as efficient transfer of genes encoding TCRs recognizing the melanoma antigen tyrosinase. Strikingly, T cells genetically modified with CD8-LV killed melanoma cells reproducibly more efficiently than CD8(+) cells transduced with a conventional lentiviral vector. Neither TCR expression levels, nor the rate of activation-induced death of transduced cells differed between both vector types. Instead, CD8-LV transduced cells showed increased granzyme B and perforin levels as well as an up-regulation of CD8 surface expression in a small subpopulation of cells. Thus, a possible mechanism for CD8-LV enhanced tumor cell killing may be based on activation of the effector functions of CD8(+) T cells by the vector particle displaying OKT8-derived CD8-scFv and an increase of the surface density of CD8, which functions as coreceptor for tumor-cell recognition. CD8-LV represents a powerful novel vector for TCR gene therapy and other applications in immunotherapy and basic research requiring CD8(+) cell-specific gene delivery.

Transfer of tumor-specific T-cell receptor (TCR) genes into patient T cells is a promising strategy in cancer immunotherapy. We describe here a novel vector (CD8-LV) derived from lentivirus, which delivers genes exclusively and specifically to CD8(+) cells. CD8-LV mediated stable in vitro and in vivo reporter gene transfer as well as efficient transfer of genes encoding TCRs recognizing the melanoma antigen tyrosinase. Strikingly, T cells genetically modified with CD8-LV killed melanoma cells reproducibly more efficiently than CD8(+) cells transduced with a conventional lentiviral vector. Neither TCR expression levels, nor the rate of activation-induced death of transduced cells differed between both vector types. Instead, CD8-LV transduced cells showed increased granzyme B and perforin levels as well as an up-regulation of CD8 surface expression in a small subpopulation of cells. Thus, a possible mechanism for CD8-LV enhanced tumor cell killing may be based on activation of the effector functions of CD8(+) T cells by the vector particle displaying OKT8-derived CD8-scFv and an increase of the surface density of CD8, which functions as coreceptor for tumor-cell recognition. CD8-LV represents a powerful novel vector for TCR gene therapy and other applications in immunotherapy and basic research requiring CD8(+) cell-specific gene delivery.

Citations

15 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

154 downloads since deposited on 21 Dec 2012
54 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:21 Dec 2012 14:23
Last Modified:05 Apr 2016 16:11
Publisher:American Society of Hematology
Series Name:Blood
ISSN:0006-4971
Additional Information:This research was originally published in Blood.T-cell receptor gene transfer exclusively to human CD8+ cells enhances tumor cell killing. Copyright by the American Society of Hematology.
Publisher DOI:https://doi.org/10.1182/blood-2012-02-412973
PubMed ID:22898597
Permanent URL: https://doi.org/10.5167/uzh-68467

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 616kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations