UZH-Logo

Maintenance Infos

A new mechanism for transmissible prion diseases


Makarava, Natallia; Kovacs, Gabor G; Savtchenko, Regina; Alexeeva, Irina; Ostapchenko, Valeriy G; Budka, Herbert; Rohwer, Robert G; Baskakov, Ilia V (2012). A new mechanism for transmissible prion diseases. Journal of Neuroscience, 32(21):7345-7355.

Abstract

The transmissible agent of prion disease consists of prion protein (PrP) in β-sheet-rich state (PrP(Sc)) that can replicate its conformation according to a template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide accurately reproduces that of the PrP(Sc) template. Here, three conformationally distinct amyloid states were prepared in vitro using Syrian hamster recombinant PrP (rPrP) in the absence of cellular cofactors. Surprisingly, no signs of prion infection were found in Syrian hamsters inoculated with rPrP fibrils that resembled PrP(Sc), whereas an alternative amyloid state, with a folding pattern different from that of PrP(Sc), induced a pathogenic process that led to transmissible prion disease. An atypical proteinase K-resistant, transmissible PrP form that resembled the structure of the amyloid seeds was observed during a clinically silent stage before authentic PrP(Sc) emerged. The dynamics between the two forms suggest that atypical proteinase K-resistant PrP (PrPres) gave rise to PrP(Sc). While no PrP(Sc) was found in preparations of fibrils using protein misfolding cyclic amplification with beads (PMCAb), rPrP fibrils gave rise to atypical PrPres in modified PMCAb, suggesting that atypical PrPres was the first product of PrP(C) misfolding triggered by fibrils. The current work demonstrates that a new mechanism responsible for prion diseases different from the PrP(Sc)-templated or spontaneous conversion of PrP(C) into PrP(Sc) exists. This study provides compelling evidence that noninfectious amyloids with a structure different from that of PrP(Sc) could lead to transmissible prion disease. This work has numerous implications for understanding the etiology of prion and other neurodegenerative diseases.

The transmissible agent of prion disease consists of prion protein (PrP) in β-sheet-rich state (PrP(Sc)) that can replicate its conformation according to a template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide accurately reproduces that of the PrP(Sc) template. Here, three conformationally distinct amyloid states were prepared in vitro using Syrian hamster recombinant PrP (rPrP) in the absence of cellular cofactors. Surprisingly, no signs of prion infection were found in Syrian hamsters inoculated with rPrP fibrils that resembled PrP(Sc), whereas an alternative amyloid state, with a folding pattern different from that of PrP(Sc), induced a pathogenic process that led to transmissible prion disease. An atypical proteinase K-resistant, transmissible PrP form that resembled the structure of the amyloid seeds was observed during a clinically silent stage before authentic PrP(Sc) emerged. The dynamics between the two forms suggest that atypical proteinase K-resistant PrP (PrPres) gave rise to PrP(Sc). While no PrP(Sc) was found in preparations of fibrils using protein misfolding cyclic amplification with beads (PMCAb), rPrP fibrils gave rise to atypical PrPres in modified PMCAb, suggesting that atypical PrPres was the first product of PrP(C) misfolding triggered by fibrils. The current work demonstrates that a new mechanism responsible for prion diseases different from the PrP(Sc)-templated or spontaneous conversion of PrP(C) into PrP(Sc) exists. This study provides compelling evidence that noninfectious amyloids with a structure different from that of PrP(Sc) could lead to transmissible prion disease. This work has numerous implications for understanding the etiology of prion and other neurodegenerative diseases.

Citations

36 citations in Web of Science®
35 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

29 downloads since deposited on 07 Jan 2013
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:07 Jan 2013 11:29
Last Modified:05 Apr 2016 16:11
Publisher:Society for Neuroscience
ISSN:0270-6474
Publisher DOI:https://doi.org/10.1523/JNEUROSCI.6351-11.2012
PubMed ID:22623680
Permanent URL: https://doi.org/10.5167/uzh-68515

Download

[img]
Preview
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations