UZH-Logo

Maintenance Infos

Functional characterization of Drosophila microRNAs by a novel in vivo library


Schertel, Claus; Rutishauser, Tobias; Förstemann, Klaus; Basler, Konrad (2012). Functional characterization of Drosophila microRNAs by a novel in vivo library. Genetics, 192(4):1543-52.

Abstract

Animal microRNAs (miRNA) are implicated in the control of nearly all cellular functions. Due to high sequence redundancy within the miRNA gene pool, loss of most of these 21- to 24-bp long RNAs individually does not cause a phenotype. Thus, only very few miRNAs have been associated with clear functional roles. We constructed a transgenic UAS-miRNA library in Drosophila melanogaster that contains 180 fly miRNAs. This library circumvents the redundancy issues by facilitating the controlled misexpression of individual miRNAs and is a useful tool to complement loss-of-function approaches. Demonstrating the effectiveness of our library, 78 miRNAs induced clear phenotypes. Most of these miRNAs were previously unstudied. Furthermore, we present a simple system to create GFP sensors to monitor miRNA expression and test direct functional interactions in vivo. Finally, we focus on the miR-92 family and identify a direct target gene that is responsible for the specific wing phenotype induced by the misexpression of miR-92 family members.

Animal microRNAs (miRNA) are implicated in the control of nearly all cellular functions. Due to high sequence redundancy within the miRNA gene pool, loss of most of these 21- to 24-bp long RNAs individually does not cause a phenotype. Thus, only very few miRNAs have been associated with clear functional roles. We constructed a transgenic UAS-miRNA library in Drosophila melanogaster that contains 180 fly miRNAs. This library circumvents the redundancy issues by facilitating the controlled misexpression of individual miRNAs and is a useful tool to complement loss-of-function approaches. Demonstrating the effectiveness of our library, 78 miRNAs induced clear phenotypes. Most of these miRNAs were previously unstudied. Furthermore, we present a simple system to create GFP sensors to monitor miRNA expression and test direct functional interactions in vivo. Finally, we focus on the miR-92 family and identify a direct target gene that is responsible for the specific wing phenotype induced by the misexpression of miR-92 family members.

Citations

17 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 07 Jan 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:December 2012
Deposited On:07 Jan 2013 13:35
Last Modified:05 Apr 2016 16:11
Publisher:Genetics Society of America
Series Name:Genetics
ISSN:0016-6731
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1534/genetics.112.145383
PubMed ID:23051640
Permanent URL: https://doi.org/10.5167/uzh-68567

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations