UZH-Logo

Maintenance Infos

Stabilization of a prion strain of synthetic origin requires multiple serial passages


Makarava, Natallia; Kovacs, Gabor G; Savtchenko, Regina; Alexeeva, Irina; Budka, Herbert; Rohwer, Robert G; Baskakov, Ilia V (2012). Stabilization of a prion strain of synthetic origin requires multiple serial passages. Journal of Biological Chemistry, 287(36):30205-30214.

Abstract

Transmission of prions to a new host is frequently accompanied by strain adaptation, a phenomenon that involves reduction of the incubation period, a change in neuropathological features and, sometimes, tissue tropism. Here we show that a strain of synthetic origin (SSLOW), although serially transmitted within the same species, displayed the key attributes of the strain adaptation process. At least four serial passages were required to stabilize the strain-specific SSLOW phenotype. The biological titration of SSLOW revealed a correlation between clinical signs and accumulation of PrP(Sc) in brains of animals inoculated with high doses (10(-1)-10(-5) diluted brain material), but dissociation between the two processes at low dose inocula (10(-6)-10(-8) diluted brain material). At low doses, several asymptomatic animals harbored large amounts of PrP(Sc) comparable with those seen in the brains of terminally ill animals, whereas one clinically ill animal had very little, if any, PrP(Sc). In summary, the current study illustrates that the phenomenon of prion strain adaptation is more common than generally thought and could be observed upon serial transmission without changing the host species. When PrP(Sc) is seeded by recombinant PrP structures different from that of authentic PrP(Sc), PrP(Sc) properties continued to evolve for as long as four serial passages.

Transmission of prions to a new host is frequently accompanied by strain adaptation, a phenomenon that involves reduction of the incubation period, a change in neuropathological features and, sometimes, tissue tropism. Here we show that a strain of synthetic origin (SSLOW), although serially transmitted within the same species, displayed the key attributes of the strain adaptation process. At least four serial passages were required to stabilize the strain-specific SSLOW phenotype. The biological titration of SSLOW revealed a correlation between clinical signs and accumulation of PrP(Sc) in brains of animals inoculated with high doses (10(-1)-10(-5) diluted brain material), but dissociation between the two processes at low dose inocula (10(-6)-10(-8) diluted brain material). At low doses, several asymptomatic animals harbored large amounts of PrP(Sc) comparable with those seen in the brains of terminally ill animals, whereas one clinically ill animal had very little, if any, PrP(Sc). In summary, the current study illustrates that the phenomenon of prion strain adaptation is more common than generally thought and could be observed upon serial transmission without changing the host species. When PrP(Sc) is seeded by recombinant PrP structures different from that of authentic PrP(Sc), PrP(Sc) properties continued to evolve for as long as four serial passages.

Citations

23 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

39 downloads since deposited on 21 Dec 2012
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:21 Dec 2012 13:36
Last Modified:26 Aug 2016 07:32
Publisher:American Society for Biochemistry and Molecular Biology
ISSN:0021-9258
Additional Information:This research was originally published in: Makarava, Natallia; Kovacs, Gabor G; Savtchenko, Regina; Alexeeva, Irina; Budka, Herbert; Rohwer, Robert G; Baskakov, Ilia V (2012). Stabilization of a prion strain of synthetic origin requires multiple serial passages. Journal of Biological Chemistry, 287(36):30205-30214. © the American Society for Biochemistry and Molecular Biology
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1074/jbc.M112.392985
PubMed ID:22807452
Permanent URL: https://doi.org/10.5167/uzh-68640

Download

[img]
Filetype: PDF - Registered users only
Size: 5MB
View at publisher
[img]
Content: Accepted Version
Filetype: PDF
Size: 5MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations