UZH-Logo

Maintenance Infos

Anti-HIV activity mediated by natural killer and CD8+ cells after toll-like receptor 7/8 triggering


Schlaepfer, E; Speck, R F (2008). Anti-HIV activity mediated by natural killer and CD8+ cells after toll-like receptor 7/8 triggering. PLoS ONE, 3(4):e1999.

Abstract

We previously found that triggering TLR7/8 either by single stranded HIV RNA or synthetic compounds induced changes in the lymphoid microenvironment unfavorable to HIV. In this study, we used selective TLR7 and 8 agonists to dissect their contribution to the anti-HIV effects. While triggering TLR7 inhibited efficiently HIV replication in lymphoid suspension cells from tonsillar origin, its effect was inconsistent in peripheral blood mononuclear cells (PBMC). In contrast, triggering TLR8 showed a very prominent and overall very consistent effect in PBMC and tonsillar lymphoid suspension cells. Depletion of dendritic cells (DC), Natural killer cells (NK) and CD8+ T-cells from PBMC resulted in the reversal of TLR8 induced anti-HIV effects. Especially noteworthy, depletion of either NK or CD8+ T-cells alone was only partially effective. We interpret these findings that DC are the initiator of complex changes in the microenvironment that culminates in the anti-HIV active NK and CD8+ effector cells. The near lack of NK and the low number of CD8+ T-cells in tonsillar lymphoid suspension cells may explain the lower TLR8 agonist's anti-HIV effects in that tissue. However, additional cell-type specific differences must exist since the TLR7 agonists had a very strong inhibitory effect in tonsillar lymphoid suspension cells. Separation of effector from the CD4+ target cells did not abolish the anti-HIV effects pointing to the critical role of soluble factors. Triggering TLR7 or 8 were accompanied by major changes in the cytokine milieu; however, it appeared that not a single soluble factor could be assigned for the potent effects.These results delineate the complex effects of triggering TLR7/8 for an efficient antiviral defense. While the ultimate mechanism(s) remains unknown, the potent effects described may have therapeutic value for treating chronic viral diseases. Notably, HIV replication is blocked by TLR triggering before HIV integrates into the host chromosome which would prevent the establishment or maintenance of the latent reservoir.

Abstract

We previously found that triggering TLR7/8 either by single stranded HIV RNA or synthetic compounds induced changes in the lymphoid microenvironment unfavorable to HIV. In this study, we used selective TLR7 and 8 agonists to dissect their contribution to the anti-HIV effects. While triggering TLR7 inhibited efficiently HIV replication in lymphoid suspension cells from tonsillar origin, its effect was inconsistent in peripheral blood mononuclear cells (PBMC). In contrast, triggering TLR8 showed a very prominent and overall very consistent effect in PBMC and tonsillar lymphoid suspension cells. Depletion of dendritic cells (DC), Natural killer cells (NK) and CD8+ T-cells from PBMC resulted in the reversal of TLR8 induced anti-HIV effects. Especially noteworthy, depletion of either NK or CD8+ T-cells alone was only partially effective. We interpret these findings that DC are the initiator of complex changes in the microenvironment that culminates in the anti-HIV active NK and CD8+ effector cells. The near lack of NK and the low number of CD8+ T-cells in tonsillar lymphoid suspension cells may explain the lower TLR8 agonist's anti-HIV effects in that tissue. However, additional cell-type specific differences must exist since the TLR7 agonists had a very strong inhibitory effect in tonsillar lymphoid suspension cells. Separation of effector from the CD4+ target cells did not abolish the anti-HIV effects pointing to the critical role of soluble factors. Triggering TLR7 or 8 were accompanied by major changes in the cytokine milieu; however, it appeared that not a single soluble factor could be assigned for the potent effects.These results delineate the complex effects of triggering TLR7/8 for an efficient antiviral defense. While the ultimate mechanism(s) remains unknown, the potent effects described may have therapeutic value for treating chronic viral diseases. Notably, HIV replication is blocked by TLR triggering before HIV integrates into the host chromosome which would prevent the establishment or maintenance of the latent reservoir.

Citations

14 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

51 downloads since deposited on 08 Dec 2008
22 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Infectious Diseases
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2008
Deposited On:08 Dec 2008 17:17
Last Modified:09 Aug 2016 09:26
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0001999
PubMed ID:18431484

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations