UZH-Logo

Maintenance Infos

Contractions, a risk for premature rupture of fetal membranes: A new protocol with cyclic biaxial tension


Perrini, Michela; Bürzle, Wilfried; Haller, Claudia; Ochsenbein, Nicole; Deprest, Jan; Zimmermann, Roland; Mazza, Edoardo; Ehrbar, Martin (2013). Contractions, a risk for premature rupture of fetal membranes: A new protocol with cyclic biaxial tension. Medical Engineering & Physics, 35(6):846-851.

Abstract

This study aims at investigating the effect of repeated mechanical loading on the rupture and deformation properties of fetal membranes. Ten membranes delivered by cesarean sections were tested using a custom-built inflation device which provides a multi-axial stress state. For each membrane, a group of samples was first cyclically stretched by application of pressure ranging between 10 and 40mmHg. After cycles, samples were subjected to inflation up to rupture. Differences between mechanical parameters from cycled and uncycled samples were analyzed. Ten cycles at 40% of mean critical membrane tension-representative of mean physiologic contractions-did not affect strength and stiffness of fetal membranes but reduced the work to rupture, thus indicating that contractions might increase the risk of premature rupture of the membrane. Cyclic testing demonstrated a large hysteresis loop and irreversible deformation on the first cycle, followed by rapid stabilization on subsequent cycles. In 80% of tests, amnion ruptured first and at the periphery of the sample, under uniaxial strain state. Chorion ruptured at higher deformation levels in the middle, under biaxial strain state.

This study aims at investigating the effect of repeated mechanical loading on the rupture and deformation properties of fetal membranes. Ten membranes delivered by cesarean sections were tested using a custom-built inflation device which provides a multi-axial stress state. For each membrane, a group of samples was first cyclically stretched by application of pressure ranging between 10 and 40mmHg. After cycles, samples were subjected to inflation up to rupture. Differences between mechanical parameters from cycled and uncycled samples were analyzed. Ten cycles at 40% of mean critical membrane tension-representative of mean physiologic contractions-did not affect strength and stiffness of fetal membranes but reduced the work to rupture, thus indicating that contractions might increase the risk of premature rupture of the membrane. Cyclic testing demonstrated a large hysteresis loop and irreversible deformation on the first cycle, followed by rapid stabilization on subsequent cycles. In 80% of tests, amnion ruptured first and at the periphery of the sample, under uniaxial strain state. Chorion ruptured at higher deformation levels in the middle, under biaxial strain state.

Citations

10 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 17 Jan 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Obstetrics
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:17 Jan 2013 10:08
Last Modified:05 Apr 2016 16:15
Publisher:Elsevier
ISSN:1350-4533
Publisher DOI:https://doi.org/10.1016/j.medengphy.2012.08.014
PubMed ID:22998894
Permanent URL: https://doi.org/10.5167/uzh-69625

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 492kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations