We compute the accuracy at which a Laser Interferometer Space Antenna-like space-based gravitational wave detector will be able to observe deviations from general relativity in the low frequency approximation. To do so, we introduce six correction parameters that account for modified gravity in the second post-Newtonian gravitational wave phase for inspiralling supermassive black hole binaries with spin precession on quasicircular orbits. Our implementation can be regarded as a subset of the parametrized post-Einsteinian formalism developed by Yunes and Pretorius, being able to investigate also next-to-leading order effects. In order to find error distributions for the alternative theory parameters, we use the Fisher information formalism and carry out Monte Carlo simulations for 17 different binary black hole mass configurations in the range 105Msun<M<108Msun with 103 randomly distributed points in the parameter space each, comparing the full (FWF) and restricted (RWF) versions of the gravitational waveform. We find that the binaries can roughly be separated into two groups: one with low (≲107Msun) and one with high total masses (≳107Msun). The RWF errors on the alternative theory parameters are 2 orders of magnitude higher than the FWF errors for high-mass binaries while almost comparable for low-mass binaries. Because of dilution of the available information, the accuracy of the binary parameters is reduced by factors of a few, except for the luminosity distance, which is affected more seriously in the high-mass regime. As an application as well as to compare our research with previous work, we compute an optimal lower bound on the graviton Compton wavelength, which is increased by a factor of ˜1.6 when using the FWF.

Huwyler, Cédric; Klein, Antoine; Jetzer, Philippe (2012). *Testing general relativity with LISA including spin precession and higher harmonics in the waveform.* Physical Review D (Particles, Fields, Gravitation and Cosmology), 86(8):084028.

## Abstract

We compute the accuracy at which a Laser Interferometer Space Antenna-like space-based gravitational wave detector will be able to observe deviations from general relativity in the low frequency approximation. To do so, we introduce six correction parameters that account for modified gravity in the second post-Newtonian gravitational wave phase for inspiralling supermassive black hole binaries with spin precession on quasicircular orbits. Our implementation can be regarded as a subset of the parametrized post-Einsteinian formalism developed by Yunes and Pretorius, being able to investigate also next-to-leading order effects. In order to find error distributions for the alternative theory parameters, we use the Fisher information formalism and carry out Monte Carlo simulations for 17 different binary black hole mass configurations in the range 105Msun<M<108Msun with 103 randomly distributed points in the parameter space each, comparing the full (FWF) and restricted (RWF) versions of the gravitational waveform. We find that the binaries can roughly be separated into two groups: one with low (≲107Msun) and one with high total masses (≳107Msun). The RWF errors on the alternative theory parameters are 2 orders of magnitude higher than the FWF errors for high-mass binaries while almost comparable for low-mass binaries. Because of dilution of the available information, the accuracy of the binary parameters is reduced by factors of a few, except for the luminosity distance, which is affected more seriously in the high-mass regime. As an application as well as to compare our research with previous work, we compute an optimal lower bound on the graviton Compton wavelength, which is increased by a factor of ˜1.6 when using the FWF.

## Citations

## Altmetrics

## Downloads

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute for Computational Science |

Dewey Decimal Classification: | 530 Physics |

Language: | English |

Date: | October 2012 |

Deposited On: | 21 Jan 2013 16:15 |

Last Modified: | 05 Apr 2016 16:18 |

Publisher: | American Physical Society |

ISSN: | 1550-2368 |

Publisher DOI: | https://doi.org/10.1103/PhysRevD.86.084028 |

## Download

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.