UZH-Logo

Maintenance Infos

A minor merger scenario for the ultraluminous X-ray source ESO 243-49 HLX-1


Mapelli, M; Zampieri, L; Mayer, L (2012). A minor merger scenario for the ultraluminous X-ray source ESO 243-49 HLX-1. Monthly Notices of the Royal Astronomical Society, 423(2):1309-1317.

Abstract

The point-like X-ray source HLX-1 is the brightest known ultraluminous X-ray source and likely the strongest intermediate-mass black hole candidate. HLX-1 is hosted in the S0 galaxy ESO 243-49, but offset with respect to the nucleus, and its optical counterpart was identified with a massive star cluster. In this paper, we study, through N-body/smoothed particle hydrodynamics simulations, the scenario where ESO 243-49 is undergoing (or just underwent) a minor merger with a gas-rich low-mass late-type galaxy. The simulations suggest that the observed star formation rate (SFR) in ESO 243-49 is a consequence of the interaction and that the companion galaxy already underwent the second pericentre passage. We propose that the counterpart of HLX-1 coincides with the nucleus (and possibly with the nuclear star cluster) of the secondary galaxy. We estimate that, if the minor merger scenario is correct, the number density of X-ray sources similar to HLX-1 is ≈10-6 Mpc-3.

The point-like X-ray source HLX-1 is the brightest known ultraluminous X-ray source and likely the strongest intermediate-mass black hole candidate. HLX-1 is hosted in the S0 galaxy ESO 243-49, but offset with respect to the nucleus, and its optical counterpart was identified with a massive star cluster. In this paper, we study, through N-body/smoothed particle hydrodynamics simulations, the scenario where ESO 243-49 is undergoing (or just underwent) a minor merger with a gas-rich low-mass late-type galaxy. The simulations suggest that the observed star formation rate (SFR) in ESO 243-49 is a consequence of the interaction and that the companion galaxy already underwent the second pericentre passage. We propose that the counterpart of HLX-1 coincides with the nucleus (and possibly with the nuclear star cluster) of the secondary galaxy. We estimate that, if the minor merger scenario is correct, the number density of X-ray sources similar to HLX-1 is ≈10-6 Mpc-3.

Citations

13 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

32 downloads since deposited on 22 Jan 2013
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:June 2012
Deposited On:22 Jan 2013 08:12
Last Modified:05 Apr 2016 16:18
Publisher:Wiley-Blackwell
ISSN:0035-8711
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:https://doi.org/10.1111/j.1365-2966.2012.20955.x
Permanent URL: https://doi.org/10.5167/uzh-70257

Download

[img]
Preview
Filetype: PDF
Size: 253kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations