UZH-Logo

Maintenance Infos

Indirect dark matter searches: Towards a consistent top-bottom approach for studying the gamma-ray signals and associated backgrounds


Nezri, Emmanuel; Lavalle, Julien; Teyssier, Romain (2012). Indirect dark matter searches: Towards a consistent top-bottom approach for studying the gamma-ray signals and associated backgrounds. Physical Review D (Particles, Fields, Gravitation and Cosmology), 86(6):063524.

Abstract

While dark matter (DM) is the key ingredient for a successful theory of structure formation, its microscopic nature remains elusive. Indirect detection may provide a powerful test for some strongly motivated DM particle models. Nevertheless, astrophysical backgrounds are usually expected with amplitudes and spectral features similar to the chased signals. On galactic scales, these backgrounds arise from interactions of cosmic rays (CRs) with the interstellar gas, both being difficult to infer and model in detail from observations. Moreover, the associated predictions unavoidably come with theoretical errors, which are known to be significant. We show that a trustworthy guide for such challenging searches can be obtained by exploiting the full information contained in cosmological simulations of galaxies, which now include baryonic gas dynamics and star formation. We further insert CR production and transport from the identified supernova events and fully calculate the CR distribution in a simulated galaxy. We focus on diffuse gamma rays, and self-consistently calculate both the astrophysical galactic emission and the DM signal. We notably show that adiabatic contraction does not necessarily induce large signal-to-noise ratios in galactic centers, and could anyway be traced from the astrophysical background itself. We finally discuss how all this may be used as a generic diagnostic tool for galaxy formation.

Abstract

While dark matter (DM) is the key ingredient for a successful theory of structure formation, its microscopic nature remains elusive. Indirect detection may provide a powerful test for some strongly motivated DM particle models. Nevertheless, astrophysical backgrounds are usually expected with amplitudes and spectral features similar to the chased signals. On galactic scales, these backgrounds arise from interactions of cosmic rays (CRs) with the interstellar gas, both being difficult to infer and model in detail from observations. Moreover, the associated predictions unavoidably come with theoretical errors, which are known to be significant. We show that a trustworthy guide for such challenging searches can be obtained by exploiting the full information contained in cosmological simulations of galaxies, which now include baryonic gas dynamics and star formation. We further insert CR production and transport from the identified supernova events and fully calculate the CR distribution in a simulated galaxy. We focus on diffuse gamma rays, and self-consistently calculate both the astrophysical galactic emission and the DM signal. We notably show that adiabatic contraction does not necessarily induce large signal-to-noise ratios in galactic centers, and could anyway be traced from the astrophysical background itself. We finally discuss how all this may be used as a generic diagnostic tool for galaxy formation.

Citations

5 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

37 downloads since deposited on 22 Jan 2013
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:September 2012
Deposited On:22 Jan 2013 09:53
Last Modified:05 Apr 2016 16:18
Publisher:American Physical Society
ISSN:1550-2368
Publisher DOI:https://doi.org/10.1103/PhysRevD.86.063524

Download

[img]
Preview
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations