Using data from the COSMOS survey, we perform the first joint analysis of galaxy-galaxy weak lensing, galaxy spatial clustering, and galaxy number densities. Carefully accounting for sample variance and for scatter between stellar and halo mass, we model all three observables simultaneously using a novel and self-consistent theoretical framework. Our results provide strong constraints on the shape and redshift evolution of the stellar-to-halo mass relation (SHMR) from z = 0.2 to z = 1. At low stellar mass, we find that halo mass scales as Mh vpropM 0.46 * and that this scaling does not evolve significantly with redshift from z = 0.2 to z = 1. The slope of the SHMR rises sharply at M * > 5 × 1010 M sun and as a consequence, the stellar mass of a central galaxy becomes a poor tracer of its parent halo mass. We show that the dark-to-stellar ratio, Mh /M *, varies from low to high masses, reaching a minimum of Mh /M * ~ 27 at M * = 4.5 × 1010 M sun and Mh = 1.2 × 1012 M sun. This minimum is important for models of galaxy formation because it marks the mass at which the accumulated stellar growth of the central galaxy has been the most efficient. We describe the SHMR at this minimum in terms of the "pivot stellar mass," M piv *, the "pivot halo mass," M piv h , and the "pivot ratio," (Mh /M *)piv. Thanks to a homogeneous analysis of a single data set spanning a large redshift range, we report the first detection of mass downsizing trends for both M piv h and M piv *. The pivot stellar mass decreases from M piv * = 5.75 ± 0.13 × 1010 M sun at z = 0.88 to M piv * = 3.55 ± 0.17 × 1010 M sun at z = 0.37. Intriguingly, however, the corresponding evolution of M piv h leaves the pivot ratio constant with redshift at (Mh /M *)piv ~ 27. We use simple arguments to show how this result raises the possibility that star formation quenching may ultimately depend on Mh /M * and not simply on Mh , as is commonly assumed. We show that simple models with such a dependence naturally lead to downsizing in the sites of star formation. Finally, we discuss the implications of our results in the context of popular quenching models, including disk instabilities and active galactic nucleus feedback.

Leauthaud, Alexie; Tinker, Jeremy; et al (2012). *New constraints on the evolution of the stellar-to-dark matter connection: A combined analysis of galaxy-galaxy lensing, clustering, and stellar mass functions from z=0.2 to z=1.* Astrophysical Journal, 744(2):159.

## Abstract

Using data from the COSMOS survey, we perform the first joint analysis of galaxy-galaxy weak lensing, galaxy spatial clustering, and galaxy number densities. Carefully accounting for sample variance and for scatter between stellar and halo mass, we model all three observables simultaneously using a novel and self-consistent theoretical framework. Our results provide strong constraints on the shape and redshift evolution of the stellar-to-halo mass relation (SHMR) from z = 0.2 to z = 1. At low stellar mass, we find that halo mass scales as Mh vpropM 0.46 * and that this scaling does not evolve significantly with redshift from z = 0.2 to z = 1. The slope of the SHMR rises sharply at M * > 5 × 1010 M sun and as a consequence, the stellar mass of a central galaxy becomes a poor tracer of its parent halo mass. We show that the dark-to-stellar ratio, Mh /M *, varies from low to high masses, reaching a minimum of Mh /M * ~ 27 at M * = 4.5 × 1010 M sun and Mh = 1.2 × 1012 M sun. This minimum is important for models of galaxy formation because it marks the mass at which the accumulated stellar growth of the central galaxy has been the most efficient. We describe the SHMR at this minimum in terms of the "pivot stellar mass," M piv *, the "pivot halo mass," M piv h , and the "pivot ratio," (Mh /M *)piv. Thanks to a homogeneous analysis of a single data set spanning a large redshift range, we report the first detection of mass downsizing trends for both M piv h and M piv *. The pivot stellar mass decreases from M piv * = 5.75 ± 0.13 × 1010 M sun at z = 0.88 to M piv * = 3.55 ± 0.17 × 1010 M sun at z = 0.37. Intriguingly, however, the corresponding evolution of M piv h leaves the pivot ratio constant with redshift at (Mh /M *)piv ~ 27. We use simple arguments to show how this result raises the possibility that star formation quenching may ultimately depend on Mh /M * and not simply on Mh , as is commonly assumed. We show that simple models with such a dependence naturally lead to downsizing in the sites of star formation. Finally, we discuss the implications of our results in the context of popular quenching models, including disk instabilities and active galactic nucleus feedback.

## Citations

## Altmetrics

## Downloads

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute for Computational Science |

Dewey Decimal Classification: | 530 Physics |

Language: | English |

Date: | January 2012 |

Deposited On: | 22 Jan 2013 16:36 |

Last Modified: | 05 Apr 2016 16:19 |

Publisher: | IOP Publishing |

ISSN: | 0004-637X |

Publisher DOI: | https://doi.org/10.1088/0004-637X/744/2/159 |

## Download

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.