UZH-Logo

Maintenance Infos

Calibration by correlation using metric embedding from non-metric similarities


Censi, Andrea; Scaramuzza, Davide (2013). Calibration by correlation using metric embedding from non-metric similarities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(10):2357-2370.

Abstract

This paper presents a new intrinsic calibration method that allows us to calibrate a generic single-view point camera. From the video sequence obtained while the camera undergoes random motion, we compute the pairwise time correlation of the luminance signal for the pixels. We show that the pairwise correlation of any pixels pair is a function of the distance between the pixel directions on the visual sphere. This leads to formalizing calibration as a problem of metric embedding from non-metric measurements: we want to find the disposition of pixels on the visual sphere, from similarities that are an unknown function of the distances. This problem is a generalization of multidimensional scaling (MDS) that has so far resisted a comprehensive observability analysis and a generic solution. We show that the observability depends both on the local geometric properties as well as on the global topological properties of the target manifold. It follows that, in contrast to the Euclidean case, on the sphere we can recover the scale of the points distribution. We describe an algorithm that is robust across manifolds and can recover a metrically accurate solution when the metric information is observable. We demonstrate the performance of the algorithm for several cameras (pin-hole, fish-eye, omnidirectional).

This paper presents a new intrinsic calibration method that allows us to calibrate a generic single-view point camera. From the video sequence obtained while the camera undergoes random motion, we compute the pairwise time correlation of the luminance signal for the pixels. We show that the pairwise correlation of any pixels pair is a function of the distance between the pixel directions on the visual sphere. This leads to formalizing calibration as a problem of metric embedding from non-metric measurements: we want to find the disposition of pixels on the visual sphere, from similarities that are an unknown function of the distances. This problem is a generalization of multidimensional scaling (MDS) that has so far resisted a comprehensive observability analysis and a generic solution. We show that the observability depends both on the local geometric properties as well as on the global topological properties of the target manifold. It follows that, in contrast to the Euclidean case, on the sphere we can recover the scale of the points distribution. We describe an algorithm that is robust across manifolds and can recover a metrically accurate solution when the metric information is observable. We demonstrate the performance of the algorithm for several cameras (pin-hole, fish-eye, omnidirectional).

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

55 downloads since deposited on 19 Mar 2013
22 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Date:2013
Deposited On:19 Mar 2013 07:59
Last Modified:05 Apr 2016 16:21
Publisher:Institute of Electrical and Electronics Engineers
ISSN:0162-8828
Additional Information:© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Publisher DOI:https://doi.org/10.1109/TPAMI.2013.34
Other Identification Number:merlin-id:7902
Permanent URL: https://doi.org/10.5167/uzh-71032

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 7MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations