UZH-Logo

Maintenance Infos

Synthesis, radiolabelling and in vitro and in vivo evaluation of a novel fluorinated ABP688 derivative for the PET imaging of metabotropic glutamate receptor subtype 5


Sephton, Selena Milicevic; Dennler, Patrick; Leutwiler, Dominique S; Mu, Linjing; Wanger-Baumann, Cindy A; Schibli, Roger; Krämer, Stefanie D; Ametamey, Simon M (2012). Synthesis, radiolabelling and in vitro and in vivo evaluation of a novel fluorinated ABP688 derivative for the PET imaging of metabotropic glutamate receptor subtype 5. American Journal of Nuclear Medicine and Molecular Imaging, 2(1):14-28.

Abstract

(E)-3-(Pyridin-2-ylethynyl)cyclohex-2-enone O-(2-(3-(18)F-fluoropropoxy)ethyl) oxime ([(18)F]-PSS223) was evaluated in vitro and in vivo to establish its potential as a PET tracer for imaging metabotropic glutamate receptor subtype 5 (mGluR5). [(18)F]-PSS223 was obtained in 20% decay corrected radiochemical yield whereas the non-radioactive PSS223 was accomplished in 70% chemical yield in a S(N)2 reaction of common intermediate mesylate 8 with potassium fluoride. The in vitro binding affinity of [(18)F]-PSS223 was measured directly in a Scatchard assay to give K(d) = 3.34 ± 2.05 nM. [(18)F]-PSS223 was stable in PBS and rat plasma but was significantly metabolized by rat liver microsomal enzymes, but to a lesser extent by human liver microsomes. Within 60 min, 90% and 20% of [(18)F]-PSS223 was metabolized by rat and human microsome enzymes, respectively. In vitro autoradiography on horizontal rat brain slices showed heterogeneous distribution of [(18)F]-PSS223 with the highest accumulation in brain regions where mGluR5 is highly expressed (hippocampus, striatum and cortex). Autoradiography in vitro under blockade conditions with ABP688 confirmed the high specificity of [(18)F]-PSS223 for mGluR5. Under the same blocking conditions but using the mGluR1 antagonist, JNJ16259685, no blockade was observed demonstrating the selectivity of [(18)F]-PSS223 for mGluR5 over mGluR1. Despite favourable in vitro properties of [(18)F]-PSS223, a clear-cut visualization of mGluR5-rich brain regions in vivo in rats was not possible mainly due to a fast clearance from the brain and low metabolic stability of [(18)F]-PSS223.

(E)-3-(Pyridin-2-ylethynyl)cyclohex-2-enone O-(2-(3-(18)F-fluoropropoxy)ethyl) oxime ([(18)F]-PSS223) was evaluated in vitro and in vivo to establish its potential as a PET tracer for imaging metabotropic glutamate receptor subtype 5 (mGluR5). [(18)F]-PSS223 was obtained in 20% decay corrected radiochemical yield whereas the non-radioactive PSS223 was accomplished in 70% chemical yield in a S(N)2 reaction of common intermediate mesylate 8 with potassium fluoride. The in vitro binding affinity of [(18)F]-PSS223 was measured directly in a Scatchard assay to give K(d) = 3.34 ± 2.05 nM. [(18)F]-PSS223 was stable in PBS and rat plasma but was significantly metabolized by rat liver microsomal enzymes, but to a lesser extent by human liver microsomes. Within 60 min, 90% and 20% of [(18)F]-PSS223 was metabolized by rat and human microsome enzymes, respectively. In vitro autoradiography on horizontal rat brain slices showed heterogeneous distribution of [(18)F]-PSS223 with the highest accumulation in brain regions where mGluR5 is highly expressed (hippocampus, striatum and cortex). Autoradiography in vitro under blockade conditions with ABP688 confirmed the high specificity of [(18)F]-PSS223 for mGluR5. Under the same blocking conditions but using the mGluR1 antagonist, JNJ16259685, no blockade was observed demonstrating the selectivity of [(18)F]-PSS223 for mGluR5 over mGluR1. Despite favourable in vitro properties of [(18)F]-PSS223, a clear-cut visualization of mGluR5-rich brain regions in vivo in rats was not possible mainly due to a fast clearance from the brain and low metabolic stability of [(18)F]-PSS223.

Altmetrics

Downloads

38 downloads since deposited on 28 Feb 2014
21 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:28 Feb 2014 10:03
Last Modified:05 Apr 2016 16:22
Publisher:e-Century Publishing Corporation
ISSN:2160-8407
Free access at:PubMed ID. An embargo period may apply.
PubMed ID:23133799
Permanent URL: https://doi.org/10.5167/uzh-71398

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 4MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations