UZH-Logo

The leak mode of type II Na(+)-P(i) cotransporters


Andriani, O; Chezzi, C; Murer, H; Forster, I C (2008). The leak mode of type II Na(+)-P(i) cotransporters. Channels, 2(5):346-357.

Abstract

Na(+)-coupled phosphate cotransporters of the SLC34 gene family catalyze the movement of inorganic phosphate (P(i)) across epithelia by using the free energy of the downhill electrochemical Na(+) gradient across the luminal membrane. Electrogenic (NaPi- IIa/b) and electroneutral (NaPi-IIc) isoforms prefer divalent P(i) and show strict Na(+):P(i) stoichiometries of 3:1 and 2:1, respectively. For electrogenic cotransport, one charge is translocated per transport cycle. When NaPi-IIa or NaPi-IIb are expressed in Xenopus oocytes, application of the P(i) transport inhibitor phosphonoformic acid (PFA) blocks a leak current that is not detectable in the electroneutral isoform. In this review, we present the experimental evidence that this transport-independent leak originates from a Na(+)-dependent uniport carrier mode intrinsic to NaPi-IIa/b isoforms. Our findings, based on the characteristics of the PFA-inhibitable leak measured from wild type and mutant constructs, can be incorporated into an alternating access class model in which the leak and cotransport modes are mutually exclusive and share common kinetic partial reactions.

Na(+)-coupled phosphate cotransporters of the SLC34 gene family catalyze the movement of inorganic phosphate (P(i)) across epithelia by using the free energy of the downhill electrochemical Na(+) gradient across the luminal membrane. Electrogenic (NaPi- IIa/b) and electroneutral (NaPi-IIc) isoforms prefer divalent P(i) and show strict Na(+):P(i) stoichiometries of 3:1 and 2:1, respectively. For electrogenic cotransport, one charge is translocated per transport cycle. When NaPi-IIa or NaPi-IIb are expressed in Xenopus oocytes, application of the P(i) transport inhibitor phosphonoformic acid (PFA) blocks a leak current that is not detectable in the electroneutral isoform. In this review, we present the experimental evidence that this transport-independent leak originates from a Na(+)-dependent uniport carrier mode intrinsic to NaPi-IIa/b isoforms. Our findings, based on the characteristics of the PFA-inhibitable leak measured from wild type and mutant constructs, can be incorporated into an alternating access class model in which the leak and cotransport modes are mutually exclusive and share common kinetic partial reactions.

Citations

26 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 09 Dec 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:20 September 2008
Deposited On:09 Dec 2008 10:25
Last Modified:05 Apr 2016 12:39
Publisher:Landes Bioscience
ISSN:1933-6950
Publisher DOI:10.4161/chan.2.5.6900
PubMed ID:18989094
Permanent URL: http://doi.org/10.5167/uzh-7200

Download

[img]Content: Accepted Version
Filetype: PDF - Registered users only
Size: 5MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations