UZH-Logo

Maintenance Infos

Optimal panel-clustering in the presence of anisotropic mesh refinement


Graham, I G; Grasedyck, L; Hackbusch, W; Sauter, S (2008). Optimal panel-clustering in the presence of anisotropic mesh refinement. SIAM Journal on Numerical Analysis, 46(1):517-543.

Abstract

In this paper we consider the numerical solution of discrete boundary integral equations on polyhedral surfaces in three dimensions. When the solution contains typical edge singularities, highly stretched meshes are preferred to uniform meshes, since they reduce the number of degrees of freedom needed to obtain a fixed accuracy. The classical panel-clustering method can still be applied in the presence of such highly stretched meshes. However, we will show that the savings in computation time and storage become suboptimal because the nearfield matrix arising in the panel-clustering algorithm is no longer as sparse as it is in the case of uniform meshes. Hence, a natural question arises as to whether a new enhanced panel-clustering algorithm can be designed which performs efficiently even in the presence of highly stretched meshes. The main result of this paper is to formulate such an enhanced version of the panel-clustering algorithm. The key features of the algorithm are (i) the employment of partial analytic integration in the direction of stretching, yielding a new kernel function on a one-dimensional manifold where the influence of high aspect ratios in the stretched elements is removed, and (ii) the introduction of a generalized admissibility condition with respect to the partially integrated kernel, which ensures that certain stretched clusters which are inadmissible in the classical sense now become admissible. In the context of a model problem, we prove that our algorithm yields an accurate (up to the discretization error) matrix-vector multiplication which requires ${\cal O}(N log^k N)$ operations, where $N$ is the number of degrees of freedom and $k$ is small and independent of the aspect ratio. The generalized admissibility condition can be viewed as an addition to the classical method which may be useful in general when stretched meshes are present. We also have performed a numerical experiment which shows that the sparsity of the nearfield matrix for the enhanced panel-clustering method is not negatively affected by stretched elements, and the method will perform optimally.

Abstract

In this paper we consider the numerical solution of discrete boundary integral equations on polyhedral surfaces in three dimensions. When the solution contains typical edge singularities, highly stretched meshes are preferred to uniform meshes, since they reduce the number of degrees of freedom needed to obtain a fixed accuracy. The classical panel-clustering method can still be applied in the presence of such highly stretched meshes. However, we will show that the savings in computation time and storage become suboptimal because the nearfield matrix arising in the panel-clustering algorithm is no longer as sparse as it is in the case of uniform meshes. Hence, a natural question arises as to whether a new enhanced panel-clustering algorithm can be designed which performs efficiently even in the presence of highly stretched meshes. The main result of this paper is to formulate such an enhanced version of the panel-clustering algorithm. The key features of the algorithm are (i) the employment of partial analytic integration in the direction of stretching, yielding a new kernel function on a one-dimensional manifold where the influence of high aspect ratios in the stretched elements is removed, and (ii) the introduction of a generalized admissibility condition with respect to the partially integrated kernel, which ensures that certain stretched clusters which are inadmissible in the classical sense now become admissible. In the context of a model problem, we prove that our algorithm yields an accurate (up to the discretization error) matrix-vector multiplication which requires ${\cal O}(N log^k N)$ operations, where $N$ is the number of degrees of freedom and $k$ is small and independent of the aspect ratio. The generalized admissibility condition can be viewed as an addition to the classical method which may be useful in general when stretched meshes are present. We also have performed a numerical experiment which shows that the sparsity of the nearfield matrix for the enhanced panel-clustering method is not negatively affected by stretched elements, and the method will perform optimally.

Citations

Altmetrics

Downloads

32 downloads since deposited on 14 Jan 2009
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:2008
Deposited On:14 Jan 2009 10:50
Last Modified:05 Apr 2016 12:39
Publisher:Society for Industrial and Applied Mathematics
ISSN:0036-1429
Additional Information:Copyright © 2009, Society for Industrial and Applied Mathematics
Publisher DOI:https://doi.org/10.1137/060677987
Related URLs:http://www.ams.org/mathscinet-getitem?mr=2377274

Download

[img]
Preview
Filetype: PDF (Verlags-PDF)
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations