UZH-Logo

Maintenance Infos

Factors influencing the composition of mixed populations of a hemiclonal hybrid and its sexual host


Hellriegel, B; Reyer, H U (2000). Factors influencing the composition of mixed populations of a hemiclonal hybrid and its sexual host. Journal of Evolutionary Biology, 13(6):906-918.

Abstract

Hemiclonal/hybridogenetic hybrids combine demographic superiority of asexuals and genetic diversity of sexuals, but their need for backcrossing with a parental species tightly couples them with this sexual host. How can systems like this persist in ecological and evolutionary time? Two discrete-time mathematical models describing the complex life cycle and mating system of hybridogenetic waterfrogs (Rana esculenta) identified four factors and their interactions as important. Although female mating preferences, in combination with differences in fecundity, determine species coexistence, differences in larval competitiveness seem to be more important for the hybrid's actual frequency. However, coexistence is possible even when host and hybrid are equally fecund and competitive. Dispersal and competition interact in their influence on species composition, but ecological and reproductive dispersal has opposing effects. In ecological terms our results explain the remarkable stability of observed species ratios over time within natural hybridogenetic populations, and indicate why the species composition can vary so widely between localities. In evolutionary terms they explain the old age of these and other hybridogenetic systems. They also suggest interesting consequences for other tightly coupled systems.

Abstract

Hemiclonal/hybridogenetic hybrids combine demographic superiority of asexuals and genetic diversity of sexuals, but their need for backcrossing with a parental species tightly couples them with this sexual host. How can systems like this persist in ecological and evolutionary time? Two discrete-time mathematical models describing the complex life cycle and mating system of hybridogenetic waterfrogs (Rana esculenta) identified four factors and their interactions as important. Although female mating preferences, in combination with differences in fecundity, determine species coexistence, differences in larval competitiveness seem to be more important for the hybrid's actual frequency. However, coexistence is possible even when host and hybrid are equally fecund and competitive. Dispersal and competition interact in their influence on species composition, but ecological and reproductive dispersal has opposing effects. In ecological terms our results explain the remarkable stability of observed species ratios over time within natural hybridogenetic populations, and indicate why the species composition can vary so widely between localities. In evolutionary terms they explain the old age of these and other hybridogenetic systems. They also suggest interesting consequences for other tightly coupled systems.

Citations

47 citations in Web of Science®
51 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

101 downloads since deposited on 11 Feb 2008
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2000
Deposited On:11 Feb 2008 12:17
Last Modified:05 Apr 2016 12:15
Publisher:Wiley-Blackwell
ISSN:1010-061X
Additional Information:The definitive version is available at www.blackwell-synergy.com
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1046/j.1420-9101.2000.00235.x

Download

[img]
Content: Accepted Version
Filetype: MS Word
Size: 536kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations