UZH-Logo

Maintenance Infos

Free-breathing 3D whole-heart black-blood imaging with motion sensitized driven equilibrium


Srinivasan, Subashini; Hu, Peng; Kissinger, Kraig V; Goddu, Beth; Goepfert, Lois; Schmidt, Ehud J; Kozerke, Sebastian; Nezafat, Reza (2012). Free-breathing 3D whole-heart black-blood imaging with motion sensitized driven equilibrium. Journal of Magnetic Resonance Imaging (JMRI), 36(2):379-386.

Abstract

PURPOSE:
To assess the efficacy and robustness of motion sensitized driven equilibrium (MSDE) for blood suppression in volumetric 3D whole-heart cardiac MR.
MATERIALS AND METHODS:
To investigate the efficacy of MSDE on blood suppression and myocardial signal-to-noise ratio (SNR) loss on different imaging sequences, seven healthy adult subjects were imaged using 3D electrocardiogram (ECG)-triggered MSDE-prep T(1) -weighted turbo spin echo (TSE), and spoiled gradient echo (GRE), after optimization of MSDE parameters in a pilot study of five subjects. Imaging artifacts, myocardial and blood SNR were assessed. Subsequently, the feasibility of isotropic spatial resolution MSDE-prep black-blood was assessed in six subjects. Finally, 15 patients with known or suspected cardiovascular disease were recruited to be imaged using a conventional multislice 2D double inversion recovery (DIR) TSE imaging sequence and a 3D MSDE-prep spoiled GRE.
RESULTS:
The MSDE-prep yielded significant blood suppression (75%-92%), enabling a volumetric 3D black-blood assessment of the whole heart with significantly improved visualization of the chamber walls. The MSDE-prep also allowed successful acquisition of black-blood images with isotropic spatial resolution. In the patient study, 3D black-blood MSDE-prep and DIR resulted in similar blood suppression in left ventricle and right ventricle walls but the MSDE-prep had superior myocardial signal and wall sharpness.
CONCLUSION:
MSDE-prep allows volumetric black-blood imaging of the heart.

Abstract

PURPOSE:
To assess the efficacy and robustness of motion sensitized driven equilibrium (MSDE) for blood suppression in volumetric 3D whole-heart cardiac MR.
MATERIALS AND METHODS:
To investigate the efficacy of MSDE on blood suppression and myocardial signal-to-noise ratio (SNR) loss on different imaging sequences, seven healthy adult subjects were imaged using 3D electrocardiogram (ECG)-triggered MSDE-prep T(1) -weighted turbo spin echo (TSE), and spoiled gradient echo (GRE), after optimization of MSDE parameters in a pilot study of five subjects. Imaging artifacts, myocardial and blood SNR were assessed. Subsequently, the feasibility of isotropic spatial resolution MSDE-prep black-blood was assessed in six subjects. Finally, 15 patients with known or suspected cardiovascular disease were recruited to be imaged using a conventional multislice 2D double inversion recovery (DIR) TSE imaging sequence and a 3D MSDE-prep spoiled GRE.
RESULTS:
The MSDE-prep yielded significant blood suppression (75%-92%), enabling a volumetric 3D black-blood assessment of the whole heart with significantly improved visualization of the chamber walls. The MSDE-prep also allowed successful acquisition of black-blood images with isotropic spatial resolution. In the patient study, 3D black-blood MSDE-prep and DIR resulted in similar blood suppression in left ventricle and right ventricle walls but the MSDE-prep had superior myocardial signal and wall sharpness.
CONCLUSION:
MSDE-prep allows volumetric black-blood imaging of the heart.

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 14 Feb 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2012
Deposited On:14 Feb 2013 10:06
Last Modified:05 Apr 2016 16:26
Publisher:Wiley-Blackwell
ISSN:1053-1807
Publisher DOI:https://doi.org/10.1002/jmri.23662
PubMed ID:22517477

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 979kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations