UZH-Logo

Maintenance Infos

Local information transfer in soft robotic arm


Nakajima, Kohei; Li, Tao; Kang, Rongjie; Guglielmino, Emanuele; Caldwell, Darwin G; Pfeifer, Rolf (2012). Local information transfer in soft robotic arm. In: IEEE International Conference on Robotics and Biomimetics (ROBIO 2012), Guangzhou, China, 11 December 2012 - 14 December 2012, 1273-1280.

Abstract

Recently, the information theoretic approach has been increasingly used in the robotics community as powerful quantitative measures for characterizing the dynamic coupling between the controller, the body, and the environment in embodied robots. This approach is effective and useful even if this interaction regime becomes complex and nonlinear as is often the case in soft robots. In this study, we propose a method for characterizing and visualizing the information transfer spatiotemporally through the robot’s body. This method is based on the framework called “local information transfer” proposed by Lizier et al. We extend it with the permutation-information theoretic approach, which makes it feasible for continuous time series data usually obtained in robotic platforms. To test the power of the proposed method, we performed experiments using a soft robotic arm simulator and a silicone-based soft robotic arm platform inspired by the octopus and showed that the external damage spreading is successfully and clearly visualized by the method. We also analyzed the robustness of the method to noise. Finally, we discuss future applications and possible extensions.

Recently, the information theoretic approach has been increasingly used in the robotics community as powerful quantitative measures for characterizing the dynamic coupling between the controller, the body, and the environment in embodied robots. This approach is effective and useful even if this interaction regime becomes complex and nonlinear as is often the case in soft robots. In this study, we propose a method for characterizing and visualizing the information transfer spatiotemporally through the robot’s body. This method is based on the framework called “local information transfer” proposed by Lizier et al. We extend it with the permutation-information theoretic approach, which makes it feasible for continuous time series data usually obtained in robotic platforms. To test the power of the proposed method, we performed experiments using a soft robotic arm simulator and a silicone-based soft robotic arm platform inspired by the octopus and showed that the external damage spreading is successfully and clearly visualized by the method. We also analyzed the robustness of the method to noise. Finally, we discuss future applications and possible extensions.

Citations

Altmetrics

Downloads

2 downloads since deposited on 01 Feb 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Event End Date:14 December 2012
Deposited On:01 Feb 2013 07:56
Last Modified:05 Apr 2016 16:26
Publisher:IEEE
ISBN:978-1-4673-2126-6
Related URLs:http://www.ualberta.ca/~robio12/
Other Identification Number:merlin-id:7853
Permanent URL: https://doi.org/10.5167/uzh-72577

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 8MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations