UZH-Logo

Maintenance Infos

Fragmentation within and between wetland reserves: the importance of spatial scales for nest predation in reed buntings


Pasinelli, Gilberto; Schiegg, Karin (2006). Fragmentation within and between wetland reserves: the importance of spatial scales for nest predation in reed buntings. Ecography, 29(5):721-732.

Abstract

Wetlands in many parts of the world are affected by fragmentation at multiple spatial scales. In Switzerland, most wetlands have been destroyed over the past two centuries and management of the remaining wetland reserves has intensified in the recent years leading to increased fragmentation of reed areas within reserves. Using four years of data on the reproductive performance of color-banded reed bunting Emberiza schoeniclus populations, we explored fragmentation effects on nest predation rates at four spatial scales ranging from the nest to the landscape scale. In the egg stage, predation rate was negatively related to vegetation cover, vegetation height and nest height, but positively linked to water cover and depth next to the nest (nest scale). Probability of predation declined with increasing size of reed patches containing the nests and distances of nests to the water and land sided reed edge, as well as with decreasing edge to area ratio (edge scale). There was a weak positive association between degree of fragmentation of reed patches within sites and nest predation rates (site scale). Finally, nest predation probability increased with distance to the nearest wetland (landscape scale). Jointly analyzing variables from different spatial scales revealed that a model combining variables from the nest, edge and landscape scale best explained predation probability in the egg stage. In the nestling stage, the single most important factor influencing nest predation probability was the distance to the nearest wetland (landscape scale), with nest predation decreasing with distance between sites. Our results show that the probability of nest predation in reed buntings is affected by fragmentation within and between wetland reserves and that the effects differ between breeding stages. Future management of wetland reserves should aim at sparing reed patches large and dense enough to provide safe nest sites for birds.

Wetlands in many parts of the world are affected by fragmentation at multiple spatial scales. In Switzerland, most wetlands have been destroyed over the past two centuries and management of the remaining wetland reserves has intensified in the recent years leading to increased fragmentation of reed areas within reserves. Using four years of data on the reproductive performance of color-banded reed bunting Emberiza schoeniclus populations, we explored fragmentation effects on nest predation rates at four spatial scales ranging from the nest to the landscape scale. In the egg stage, predation rate was negatively related to vegetation cover, vegetation height and nest height, but positively linked to water cover and depth next to the nest (nest scale). Probability of predation declined with increasing size of reed patches containing the nests and distances of nests to the water and land sided reed edge, as well as with decreasing edge to area ratio (edge scale). There was a weak positive association between degree of fragmentation of reed patches within sites and nest predation rates (site scale). Finally, nest predation probability increased with distance to the nearest wetland (landscape scale). Jointly analyzing variables from different spatial scales revealed that a model combining variables from the nest, edge and landscape scale best explained predation probability in the egg stage. In the nestling stage, the single most important factor influencing nest predation probability was the distance to the nearest wetland (landscape scale), with nest predation decreasing with distance between sites. Our results show that the probability of nest predation in reed buntings is affected by fragmentation within and between wetland reserves and that the effects differ between breeding stages. Future management of wetland reserves should aim at sparing reed patches large and dense enough to provide safe nest sites for birds.

Citations

22 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 28 Mar 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2006
Deposited On:28 Mar 2013 13:57
Last Modified:05 Apr 2016 16:27
Publisher:Wiley-Blackwell
ISSN:0906-7590
Publisher DOI:https://doi.org/10.1111/j.2006.0906-7590.04728.x
Permanent URL: https://doi.org/10.5167/uzh-72618

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 181kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations