UZH-Logo

Maintenance Infos

Development, specificity and sublethal effects of symbiont-conferred resistance to parasitoids in aphids


Schmid, Maike; Sieber, Raphael; Zimmermann, Yannick-Serge; Vorburger, Christoph (2012). Development, specificity and sublethal effects of symbiont-conferred resistance to parasitoids in aphids. Functional Ecology, 26(1):207-215.

Abstract

1. One of the most exciting recent discoveries in the field of ecological immunology has been that insects employ the help of heritable symbionts as a defence against parasitoids and pathogens. Aphids commonly harbour the facultative bacterial endosymbiont Hamiltonella defensa, which is known to increase their resistance to parasitoids. It is unknown how this resistance develops during the aphids ontogeny, following the transmission bottleneck between mother and offspring, and how specific symbiont-conferred defences are. 2. We addressed these issues in the black bean aphid, Aphis fabae, by exposing aphids of different age classes to the parasitoid Lysiphlebus fabarum. The susceptibility of aphids that were either naturally or experimentally infected with H. defensa was compared with that of uninfected aphids. 3. Susceptibility to parasitoids decreased with aphid age, but aphids harbouring H. defensa showed an earlier and/or steeper decline to lower levels of susceptibility than aphids without this symbiont. This is consistent with the hypothesis that during aphid development, symbiont-conferred resistance builds up with bacterial population growth, which we documented using quantitative polymerase chain reaction (qPCR). 4. Parasitoids that successfully overcame the symbiont-conferred resistance still suffered from sublethal effects of H. defensa. They exhibited lower emergence, delayed development and reduced size compared with parasitoids developing in aphids without H. defensa. 5. The most striking result was a strong interaction on the rates of parasitism between aphid sublines infected with different isolates of H. defensa and the parasitoid lines they were exposed to, suggesting a high specificity of symbiont-conferred resistance. 6. Based on these results, we conclude that when faced with hosts possessing H. defensa, aphid parasitoids are under selection to preferentially attack the youngest host stages and/or to discriminate against symbiont-protected aphids. Furthermore, the specificity induced by H. defensa in the interaction between host and parasitoid is likely to have important consequences for co-evolution. It may result in negative frequency-dependent selection and thus promote genotypic variation.

1. One of the most exciting recent discoveries in the field of ecological immunology has been that insects employ the help of heritable symbionts as a defence against parasitoids and pathogens. Aphids commonly harbour the facultative bacterial endosymbiont Hamiltonella defensa, which is known to increase their resistance to parasitoids. It is unknown how this resistance develops during the aphids ontogeny, following the transmission bottleneck between mother and offspring, and how specific symbiont-conferred defences are. 2. We addressed these issues in the black bean aphid, Aphis fabae, by exposing aphids of different age classes to the parasitoid Lysiphlebus fabarum. The susceptibility of aphids that were either naturally or experimentally infected with H. defensa was compared with that of uninfected aphids. 3. Susceptibility to parasitoids decreased with aphid age, but aphids harbouring H. defensa showed an earlier and/or steeper decline to lower levels of susceptibility than aphids without this symbiont. This is consistent with the hypothesis that during aphid development, symbiont-conferred resistance builds up with bacterial population growth, which we documented using quantitative polymerase chain reaction (qPCR). 4. Parasitoids that successfully overcame the symbiont-conferred resistance still suffered from sublethal effects of H. defensa. They exhibited lower emergence, delayed development and reduced size compared with parasitoids developing in aphids without H. defensa. 5. The most striking result was a strong interaction on the rates of parasitism between aphid sublines infected with different isolates of H. defensa and the parasitoid lines they were exposed to, suggesting a high specificity of symbiont-conferred resistance. 6. Based on these results, we conclude that when faced with hosts possessing H. defensa, aphid parasitoids are under selection to preferentially attack the youngest host stages and/or to discriminate against symbiont-protected aphids. Furthermore, the specificity induced by H. defensa in the interaction between host and parasitoid is likely to have important consequences for co-evolution. It may result in negative frequency-dependent selection and thus promote genotypic variation.

Citations

28 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

108 downloads since deposited on 12 Feb 2013
16 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Aphis fabae; co-evolution; Hamiltonella defensa; Lysiphlebus fabarum; parasitoid; quantitative PCR; resistance; symbiosis
Language:English
Date:2012
Deposited On:12 Feb 2013 10:26
Last Modified:05 Apr 2016 16:27
Publisher:Wiley-Blackwell
ISSN:0269-8463
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:https://doi.org/10.1111/j.1365-2435.2011.01904.x
Permanent URL: https://doi.org/10.5167/uzh-72692

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 465kB
View at publisher
[img]
Preview
Content: Submitted Version
Filetype: PDF
Size: 693kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations