UZH-Logo

Maintenance Infos

Tolerance of fungal infection in European water frogs exposed to Batrachochytrium dendrobatidis after experimental reduction of innate immune defenses


Woodhams, Douglas C; Bigler, Laurent; Marschang, Rachel (2012). Tolerance of fungal infection in European water frogs exposed to Batrachochytrium dendrobatidis after experimental reduction of innate immune defenses. BMC Veterinary Research, 8:197.

Abstract

BACKGROUND: While emerging diseases are affecting many populations of amphibians, some populations are resistant. Determining the relative contributions of factors influencing disease resistance is critical for effective conservation management. Innate immune defenses in amphibian skin are vital host factors against a number of emerging pathogens such as ranaviruses and the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). Adult water frogs from Switzerland (Pelophylax esculentus and P. lessonae) collected in the field with their natural microbiota intact were exposed to Bd after experimental reduction of microbiota, skin peptides, both, or neither to determine the relative contributions of these defenses. RESULTS: Naturally-acquired Bd infections were detected in 10/51 P. lessonae and 4/19 P. esculentus, but no disease outbreaks or population declines have been detected at this site. Thus, this population was immunologically primed, and disease resistant. No mortality occurred during the 64 day experiment. Forty percent of initially uninfected frogs became sub-clinically infected upon experimental exposure to Bd. Reduction of both skin peptide and microbiota immune defenses caused frogs to gain less mass when exposed to Bd than frogs in other treatments. Microbiota-reduced frogs increased peptide production upon Bd infection. Ranavirus was undetectable in all but two frogs that appeared healthy in the field, but died within a week under laboratory conditions. Virus was detectable in both toe-clips and internal organs. CONCLUSION: Intact skin microbiota reduced immune activation and can minimize subclinical costs of infection. Tolerance of Bd or ranavirus infection may differ with ecological conditions.

BACKGROUND: While emerging diseases are affecting many populations of amphibians, some populations are resistant. Determining the relative contributions of factors influencing disease resistance is critical for effective conservation management. Innate immune defenses in amphibian skin are vital host factors against a number of emerging pathogens such as ranaviruses and the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). Adult water frogs from Switzerland (Pelophylax esculentus and P. lessonae) collected in the field with their natural microbiota intact were exposed to Bd after experimental reduction of microbiota, skin peptides, both, or neither to determine the relative contributions of these defenses. RESULTS: Naturally-acquired Bd infections were detected in 10/51 P. lessonae and 4/19 P. esculentus, but no disease outbreaks or population declines have been detected at this site. Thus, this population was immunologically primed, and disease resistant. No mortality occurred during the 64 day experiment. Forty percent of initially uninfected frogs became sub-clinically infected upon experimental exposure to Bd. Reduction of both skin peptide and microbiota immune defenses caused frogs to gain less mass when exposed to Bd than frogs in other treatments. Microbiota-reduced frogs increased peptide production upon Bd infection. Ranavirus was undetectable in all but two frogs that appeared healthy in the field, but died within a week under laboratory conditions. Virus was detectable in both toe-clips and internal organs. CONCLUSION: Intact skin microbiota reduced immune activation and can minimize subclinical costs of infection. Tolerance of Bd or ranavirus infection may differ with ecological conditions.

Citations

10 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

50 downloads since deposited on 12 Feb 2013
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Amphibian; Antimicrobial peptide; Chytridiomycosis; MALDI-MS; Microbiota; Pelophylax; Ranavirus
Language:English
Date:2012
Deposited On:12 Feb 2013 11:50
Last Modified:21 Nov 2016 15:41
Publisher:BioMed Central
ISSN:1746-6148
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1746-6148-8-197
PubMed ID:23088169
Permanent URL: https://doi.org/10.5167/uzh-73020

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations