The balanced lethal system of crested newts: A ghost of sex chromosomes past?

Grossen, Christine; Neuenschwander, Samuel; Perrin, Nicolas

Abstract: Balanced lethal systems are more than biological curiosities: as theory predicts, they should quickly be eliminated through the joint forces of recombination and selection. That such systems might become fixed in natural populations poses a challenge to evolutionary theory. Here we address the case of a balanced lethal system fixed in crested newts and related species, which makes 50% of offspring die early in development. All adults are heteromorphic for chromosome pair 1. The two homologues (1A and 1B) have different recessive deleterious alleles fixed on a nonrecombining segment, so that heterozygotes are viable, while homozygotes are lethal. Given such a strong segregation load, how could autosomes stop recombining? We propose a role for a sex-chromosome turnover from pair 1 (putative ancestral sex chromosome) to pair 4 (currently active sex chromosome). Accordingly, 1A and 1B represent two variants (Y(A) and Y(B)) of the Y chromosome from an ancestral male-heterogametic system. We formalize a scenario in which turnovers are driven by sex ratio selection stemming from gene-environment interactions on sex determination. Individual-based simulations show that a balanced lethal system can be fixed with significant likelihood, provided the masculinizing allele on chromosome 4 appears after the elimination of the feminizing allele on chromosome 1. Our study illustrates how strikingly maladaptive traits might evolve through natural selection.

DOI: https://doi.org/10.1086/668076
The Balanced Lethal System of Crested Newts: A Ghost of Sex Chromosomes Past?

Christine Grossen,1,2,* Samuel Neuenschwander,1,3 and Nicolas Perrin1

1. Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland; 2. Institute of Evolutionary Biology and Environmental Studies, University of Zürich, CH 8057 Zürich, Switzerland; 3. Vital-TI, Swiss Institute of Bioinformatics, University of Lausanne, CH 1015 Lausanne, Switzerland

Submitted February 16, 2012; Accepted August 8, 2012; Electronically published October 25, 2012
Dryad data: http://dx.doi.org/10.5061/dryad.3e977.

ABSTRACT: Balanced lethal systems are more than biological curiosities: as theory predicts, they should quickly be eliminated through the joint forces of recombination and selection. That such systems might become fixed in natural populations poses a challenge to evolutionary theory. Here we address the case of a balanced lethal system fixed in crested newts and related species, which makes 50% of offspring die early in development. All adults are heteromorphic for chromosome pair 1. The two homologues (1A and 1B) have different recessive deleterious alleles fixed on a nonrecombining segment, so that heterozygotes are viable, while homozygotes are lethal. Given such a strong segregation load, how could autosomes stop recombining? We propose a role for a sex-chromosome turnover from pair 1 (putative ancestral sex chromosome) to pair 4 (currently active sex chromosome). Accordingly, 1A and 1B represent two variants (Ys and Yc) of the Y chromosome from an ancestral male-heterogametic system. We formalize a scenario in which turnovers are driven by sex ratio selection stemming from gene-environment interactions on sex determination. Individual-based simulations show that a balanced lethal system can be fixed with significant likelihood, provided the masculinizing allele on chromosome 4 appears after the elimination of the feminizing allele on chromosome 1. Our study illustrates how strikingly maladaptive traits might evolve through natural selection.

Keywords: balanced lethal system, maladaptive trait, sex chromosome turnovers, sex ratio selection.

Introduction

When a female crested newt lays a clutch, nothing will save her from losing half of her investment. Fifty percent of all embryos will stop growing early in development and die within a few days (Rusconi 1821; in Wallace 1887). This developmental arrest syndrome was later recognized to result from a balanced lethal system. Callan and Lloyd (1960) first noticed that chromosome pair 1 in Triturus cristatus adults was heteromorphic and that the two variants (1A and 1B) harbored heterochromatic segments that did not form chiasmata in the oocyte lamplash bivalent stage. Further investigations showed that all nonviable offspring were homozygotes for one of the two variants (i.e., 1A/1A or 1B/1B). The same pattern was found to occur in the related Triturus marmoratus but not in the more distant Triturus alpestris (Macgregor and Horner 1980). Triturus marmoratus and T. cristatus shared a common ancestor some 20 million years ago (Arntzen et al. 2007; Steinfartz et al. 2007). Experimental hybridization shows that chromosome 1A from one species and 1B from the other complement each other for larval viability (Sims et al. 1984). Hence, this balanced lethal system is likely to have been inherited from their common ancestor.

How could such a maladaptive trait have evolved and be maintained in the face of natural selection, which is expected to maximize individual fitness? Two main hypotheses have been proposed so far. The first one (Sims et al. 1984; reformulated by Sessions et al. 1988) postulates a “cytogenetic accident” (specifically, unequal genic exchange between the two homologues of an autosome pair) that occurred in a common ancestor, making crossing over impossible in the region concerned. The several inversions and repeat sequences observed today (e.g., Sims et al. 1984) accumulated on the differential segment of chromosomes 1A and 1B following this arrest of recombination. The question arises, however, how a mutation leading to such an extreme fitness reduction might become fixed in a population. As the model goes, the two haplotypes (1A and 1B) resulting from unequal exchange would each carry at least one duplication and one deletion of genes essential for embryonic development (Sessions et al. 1988). Making the conservative assumption that selection removes only individuals that are homozygous for a deletion, the fitness of haplotypes 1A and 1B (relative to the normal wild-type
haplotype 1) is expected to decrease linearly with their
respective frequencies p and q (being $1 - p$ for 1A and
$1 - q$ for 1B). Such strong negative frequency dependence
should quickly eliminate mutant haplotypes, whatever the
local effective population size.

The second hypothesis, inspired by the striking similarities
with features that normally characterize the non-
recombining segments of sex chromosomes (including inversions,
arraangements, deletions, and accumulation of
repetitive sequences), links the origin of the balanced lethal
system to sex determination (Wallace 1984, 1987;
Wallace et al. 1997; Wallace and Wallace 2000). Chromosome 1
was rapidly discarded as a candidate for sex determination
because heteromorphism was found to occur in both sexes
(Morgan 1978; Macgregor and Horner 1980). The
chromosome pair 4 was then identified as the sex chromosome
pair, bearing a male-heterogametic (XX/XY) system (Sims et al. 1984). Wallace (1987) suggested that 1A and 1B
actually represent the two chromosomes of an ancestral
AA/AB sex-determination system. Accordingly, BB ho-
mozygotes are lethal because B accumulated deleterious
mutations along its evolution in the heterogametic sex.
This old system was then supplanted by the new XY
system on chromosome 4, which operated effectively only in
the former heterogametic sex AB. It is not clear, however, why
the XY system should only operate in an AB context, and
how AA should become lethal, given that the A chro-
mosome normally recombined in the former homogama-
tic sex.

In this article, we formalize an alternative hypothesis,
which also relates this balanced lethal system to ancestral
sex chromosomes. Specifically, we propose that the two
homologues 1A and 1B represent two forms (Y$_A$ and Y$_B$,
respectively) of the nonrecombining sex chromosome
from an ancient XX/XY system. We will first outline the
main steps in the argument and then formalize the argu-
ment in a simulation model.

Nonrecombining Y chromosomes necessarily accumu-
late deleterious recessive mutations because of enhanced
mutant drift, selective sweeps, background selection, and
Muller’s ratchet (Charlesworth and Charlesworth 2000;
Bachtrog 2006; Ellegren 2011). Several Y haplotypes (i.e.,
fixed for different mutations) may segregate within pop-
ulations. Such a situation has been well documented, for
instance, in the guppy Poecilia reticulata, where at least
three different Y variants have been shown to coexist in
natural populations (Haskins et al. 1970 and references
therein). These haplotypes code for different male colora-
tion morphs and are thus possibly maintained by fre-
cquency-dependent selection occurring through female
mate choice. When experimentally mating sex-reversed XY
females with XY males from different haplotypes, 25% YY
offspring are produced, which develop into fully viable
and fertile males when heterozygous for the Y haplotypes
but are lethal when homozygous (Haskins et al. 1970 and
references therein). Similar processes occur in female-het-
erogametic (ZW/ZZ) populations of Rana rugosa: different
populations have fixed different W haplotypes, so that
WW individuals are viable when their two W chromosomes
stem from different populations but not when they are
from the same population (Miura et al. 2012). This nec-
essarily implies that each haplotype has fixed one or more
recessive lethal mutations (e.g., loss of function of some
housekeeping genes) and that different mutations occur
in different haplotypes.

Sex reversal is easily triggered by temperature in many
cold-blooded vertebrates, presumably because of thermal
dependence in the expression of genes (or activity of en-
zymes) involved in the sex-determination cascade (see,
e.g., Grossen et al. 2011). This is in particular true of
crested newts, in which high temperatures have a mas-
culizing effect, while low temperatures have a feminizing
effect (Wallace et al. 1999; Wallace and Wallace 2000).

Let us assume that an ancestral newt population, har-
boring Y haplotypes diverging in terms of inversions and
deleterious mutations (Y$_A$ and Y$_B$), experienced a femi-
nizing temperature shift (due, e.g., to climatic changes or
range expansion), so that increasingly large numbers of
XY$_A$ or XY$_B$ genotypes developed into females. When mat-
ing with normal XY$_A$ or XY$_B$ males, these females generated
(among other offspring) lethal Y$_A$Y$_A$ and Y$_A$Y$_B$ homozy-
gotes, as well as viable Y$_A$Y$_B$ heterozygotes. The balanced
lethal system now fixed in T. cristatus was thereby pro-
duced. For the same reason (sex reversal), this temperature
shift also generated biased sex ratios (namely, an excess of
females), thereby inducing a selective pressure for any mas-
culizing mutation able to restore even sex ratios (Grossen et al. 2011). As we will formalize below through individual-
based simulations, this new mutation could spread to estab-
lish the new male-heterogametic system nowadays
found on chromosome 4 in crested newt lineages, while
still maintaining the Y$_A$Y$_B$ balanced lethal system trapped
on the ancestral chromosomal pair 1.

Methods

Conceptual Model

Sex-determination mechanisms can be modeled, in a
quantitative genetics framework, as a continuum between
purely genetic processes on the one hand and purely en-
vironmental processes (e.g., temperature; TSD) on the
other hand (Serre et al. 2004; Grossen et al. 2011). Spec-
ifically, sex qualifies as a threshold trait, underlain by a
liability factor (e.g., a sex hormone). Any individual will
develop into a male if its liability trait value A exceeds the
threshold (z) and into a female otherwise (fig. 1). This liability trait value \(A_{II} \), depends on the individual genotype \(II \), on the mean local temperature \(T \), and on individual deviation from this mean, stemming from microenvironment differences during the sensitive period of embryonic development. Hence, the phenotypic variance in the liability trait within populations has a genetic component (stemming from the coexistence of different genotypes) and an environmental component, assumed to be normally distributed with mean 0 and standard deviation \(\sigma_e \).

Genotypes can be defined by reaction norms (assumed to be linear in fig. 1), representing the amount of the liability trait produced by this genotype as a function of temperature. Hence, depending on local temperature, a given genotype may develop as either male or female. Temperature shifts (e.g., due to climatic changes or range expansion) will thus generate biases in sex ratios. As a consequence, sex ratio selection will induce a change in frequency of sex-determination alleles. From figure 1, for instance, in the absence of M, the masculinizing Y allele is expected to rise in frequency from 0.25 to 0.5 with a two-unit drop of temperature from its initial value. Further drops will ultimately select for a new sex-determination system (for details, see Grossen et al. 2011; for similar conceptualizations, see, e.g., Bulmer and Bull 1982; Quinn et al. 2007, 2011; Pen et al. 2010).

Implementation

We assumed linear and parallel norms of reaction, modeled as \(\alpha_{II,T} = \beta(T - T_o) \), where \(\alpha_{II,T} = (A_{II} - z)/\sigma_e \) is the standardized liability trait value for genotype \(II \), \(\beta \) is the standardized slope (change in standardized liability trait per unit change in temperature, fixed to 1 without loss of generality), and \(T_o \) is the pivotal temperature for genotype \(II \) (i.e., the temperature at which this genotype produces males and females in equal proportions).

Sex genotypes were defined at two unlinked loci. The initial sex-determining locus (on chromosome 1) had one feminizing allele \(X \) and two masculinizing alleles \(Y_a \) and \(Y_b \). The threshold \(z \) was arbitrarily set to 0, and allelic values at initial temperature conditions (\(T = 0^\circ \)) were fixed to \(-1 \) for \(X \) and \(+3 \) for both \(Y_a \) and \(Y_b \). Effects were additive, so that \(XX \) (genotypic value \(-2 \); yellow in fig. 2) developed into females, while \(XY_a \) and \(XY_b \) (genotypic values \(+2 \); pale green in fig. 2) developed into males. The second locus (on chromosome 4; horizontal axis in fig. 2)

![Figure 1: Quantitative genetics model of sex determination with gene-environment interactions. The liability trait (sex factor) produced by genotype \(II \) increases with temperature \(T^* \) (norms of reaction are assumed linear and parallel with slope \(\beta = 1 \)). Individual differences within populations (microenvironment differences during the sensitive period of embryonic development; Gaussian curves on the horizontal axis) translate into individual deviation from the genetic mean (Gaussian curves on the vertical axis). Individuals develop into males if the sex factor exceeds a threshold (bold horizontal line) and into females otherwise. At initial conditions (\(T = 0^\circ \)), genotypic values define a male-heterogametic system with \(mmmXX \) females and \(mmXY_{AB} \) males. Temperature decreases will lead to sex ratio selection, favoring a masculinizing mutation (M). If M appears before the loss of X, it goes to fixation and the initial XX/XY system is restored (genotypes in gray). If M appears after X is lost, a new male heterogametic system evolves on chromosome 4, with the fixation of a balanced lethal system on chromosome 1 (\(mMY_AY_B, \ mMY_{AB} \))](image-url)
Figure 2: Sex genotypes in a gradient of feminleness (bottom left) to maleness (top right). From the mmXX genotype (yellow, bottom left), masculinization may occur by replacing either X by Y (vertical axis) or m by M (horizontal axis). Circles around genotypic values represent the environmental variance in the liability trait (Gaussian distribution of phenotypes around the genotype average). At initial conditions, the threshold is given by the diagonal straight line at T = 0°. The initial recurrent pair is male heterogametic mmXX/mMXY (the yellow--pale green pair). Most mmXX individuals (yellow) are below the threshold and thus develop as females (except for the few crossing the threshold line), and most mMXY individuals (pale green) are above the threshold and thus develop as males. The change in environmental conditions (decreasing temperatures) is figured by the progressive displacement of the threshold line toward the male corner, from T = 0° to T = −8° (arrow). In scenario 1, mutations to M are not allowed, so that the only possible response to the environmental change is an upward shift (vertical axis), first toward a female-heterogametic mmXY/mmYY (pale and dark green), then to mmYY temperature-dependent sex determination (TSD; dark green), both systems suffering from the Y Y₉ segregation load. At the final temperature (T = −8°), populations may still keep the pale green mmXY female genotype, lose the X entirely (TSD with fixed mmYY), or become extinct, depending on whether population size and environmental variance allows production of a few males. In scenario 2, mutations to M will first generate an alternative male-heterogametic recurrent pair mmXX/mMXX (the yellow-orange pair). As temperature decreases to T = −4°, two female-heterogametic pairs are possible: mmXY/mmYY on the one hand (pale and dark green, vertical axis), and mMXX/MMXX on the other hand (orange and red, horizontal axis). However, they are not equivalent: the first one suffers from the segregation load Y Y₉, so that the latter is more likely to evolve. At T = −6°, both mmYY (dark green) and MMXX (red) produce even sex ratios (hence allowing TSD), but for the reason already mentioned, mmYY is unlikely to evolve. At T = −8° (final temperature), the male-heterogametic pair mMXX/MMXX is favored (red and violet) but can only be reached by populations that did not lose their Y in the process (mostly large ones). Other populations will either be trapped in the red MMXX (TSD) (with female-biased sex ratio) or become extinct if environmental variance is too small to allow production of a few males. In scenario 3, the system will have reached the ending situation of scenario 1 before a mutation to M occurs. In cases where the X allele was maintained (mmXY, pale green genotype), the system quickly shifts toward the high-fitness male-heterogametic pair MMXX/MMXY (red and violet). Otherwise, it is trapped in the balanced lethal, male-heterogametic mmYY/mMYY system (dark green and blue).
was initially fixed for allele m (allelic value 0) but allowed to mutate to a masculinizing state M (allelic value +4).

We assumed simple life cycles with nonoverlapping generations and constant population sizes. Reproduction occurred by choosing randomly, for each offspring, one father and one mother from the parental generation with replacement (which amounts to a promiscuous mating system) and reiterating this process until reaching the carrying capacity (news have often been described as lek breeding, and females are known to mate multiply; see, e.g., Rafinski 1981; Verrell and McCabe 1988; Hedlund and Robertson 1989; Halliday 1998; Jones et al. 2001, 2002a, 2002b; Rafinski and Osikowski 2002). YY, YY, and YY were defined as lethal and removed after reproduction.

Simulations

Simulations were run with a modified version of quantiNemo 1.0.3 (Neuenschwander et al. 2008). After a burn-in of 400 generations at starting conditions (arbitrarily fixed to T = 0°), temperature was decreased to a final value of T = −8°, reached after 1,200 generations, by steps of one temperature unit every 100 generations (standard) or 0.1 every 10 generations (smooth). The smooth temperature change led to the same outcome as the standard change (data not shown).

At initial conditions (T = 0°), alleles X, X, and Y were segregating on chromosome 1, while m was fixed on chromosome 4. In a first set of simulations, this locus was kept fixed for m (no mutation to M allowed) in order to investigate the evolution of the system under a climatic change in the absence of turnover. In a second set, we allowed masculinizing mutations to occur (at a rate of 10−3 or 10−2) right from the beginning. In the third set, this masculinizing mutation was allowed only after the climatic transition had occurred (from generation 3,000, μ = 10−4, corresponding to a very low mutation rate or a combination of several mutations).

For each set of simulations, we tested different carrying capacities (N = 50, 10, 500, 1,000, 5,000, and 10,000) and environmental variances (σ2 from 0.3 to 4.2, steps 0.3). We also tested more extreme values of σ2 (from 10−7 to 40.96), which produced qualitatively similar results (data not shown).

Results

No Masculinizing Mutation

At initial conditions (T = 0°), females were mmXX (yellow in fig. 2), males mmXY, or mmXY (pale green in fig. 2), sex ratios were equal, and sex reversal was absent (except for a large environmental variance). A first temperature drop (T = −2°) generated sex-reversed mmXY and mmXY females, which produced 25% viable sons (mmXY, mmXY) when mating with mmXY or mmXY males and 25% lethal sons (mmXY, mmXY) when mating with mmXY or mmXY males, respectively. After another drop (T = −4°), mmXY and mmXY genotypes mostly developed into females, while most adult males were mmXY (dark green in fig. 2). Hence, 25% of offspring died (being either mmXY or mmXY depending on whether males mated with a mmXY or a mmXY female).

With a further temperature drop (T = −6°), half of the mmXY genotypes developed into females, producing 50% lethal offspring when mated with mmXY males. This system evolved toward pure TSD when X was lost (which often occurred by drift in small populations). However, X had a chance to survive at large σ2 values, because a few mmXY then developed as males, with higher fitness than mmYY males (which produced more lethal YY homozygotes). Finally, following the last temperature drop (T = −8°), mmXY developed preferentially in females. This induced large female biases in sex ratios, leading to extinctions at small N and/or σ2 values (white areas in fig. 3A). Such extinctions did not occur when large N and/or σ2 permitted the development of at least a few males to rescue the population. This resulted in pure TSD (with 50% offspring mortality and strongly female-biased sex ratios) in the cases in which X had been lost (dark green areas in fig. 3A), and a mixed system when large N and/or σ2 allowed X survival (pale green areas in fig. 3A).

Early-Occurring Masculinizing Mutation

When the new masculinizing mutation M appeared early in the simulations (before X had any chance to be lost), it progressively increased in frequency as temperature dropped, ultimately becoming fixed in the population. At T = −4°, this mutation first allowed evolution toward an alternative female heterogametic system (mmXX females and MMXX males; orange and red in fig. 2) with the potential to entirely lose Y and/or Y, and Y in T = −6°, MMXX homozygotes produced males and females in equal quantities, allowing pure TSD to evolve, with the concomitant risk of losing Y and/or Y as well. Hence, X was often fixed by drift in small populations. Lower temperatures (T = −8°) then restored selection in favor of Y and/or Y (because MMXX increasingly developed into females) but mostly at small environmental variance: high σ2 values increased the probability that a few MMXX developed into males (fitter than MMXY or MMXY males), who produced lethal MMYY offspring when mating with MMXY females) and thus increased the risk of losing Y and/or Y. The fixation of X (at small N or large σ2) later caused sex ratio problems after the final temperature drop.
Outcomes:

- Extinction
- TSD (mm YY) with lethal system
- Male heterogamety (MM XY, MM XX)
- Balanced lethal system
- Mixed (mm XY, mm YY)
- TSD (MM XX) without lethal system
(T = -8°) because the only genotype left (MMXX) then mostly produced females. As a result, populations having fixed X became extinct (white areas in fig. 3B) or survived under TSD with biased sex ratios (red areas). In contrast, populations that maintained Y_1 and/or Y_2 (large N and small σ_y^2; violet areas) could restore the initial male-heterogametic system on chromosome 1, with the masculinizing factor M fixed on chromosome 4 (i.e., MMXX females and MMXY males; the red and violet pair in fig. 2) and no sex ratio biases.

Late-Occurring Masculinizing Mutation

The end patterns in this case (fig. 3C) also show three domains, the boundaries of which follow those from the first set (with no masculinizing mutation; fig. 3A). The extinction domain was similar (white areas in both figures), but the other two domains presented different equilibrium sex-determination systems. Whenever the mmyXY (pale green) genotype had been maintained (large N, large σ_y^2; pale green areas in fig. 3A), the initial male-heterogametic system on chromosome 1 was restored after fixation of M (MMXY, Y_1 males and MMXX females; violet areas in fig. 3C). In contrast, in all cases in which mmyXY (and thereby X) had been eliminated before the appearance of M (dark green in fig. 3A), the lethal system became fixed on chromosome 1 (with 50% offspring mortality), and sex was determined by a new male-heterogametic system on chromosome 4 (blue mMY_1,Y_1 females and dark green mMY_1,Y_2 females in fig. 2; blue areas in fig. 3C), akin to the situation currently observed in crested newts.

Discussion

As our results show, the developmental arrest syndrome found in crested newts (and related species) might be the direct consequence of the gene-environment interactions that characterize the sex-determination system of many ectothermic vertebrates. Our individual-based simulations provide a plausible scenario by which this extraordinary balanced lethal system might have evolved from ancestral sex chromosomes and thereby an example of how a maladaptive trait may evolve through natural selection.

Examples of naturally occurring balanced lethal systems are quite rare, being documented in Drosophila tropicalis (Dobzhansky and Pavlovsky 1953) and Tribolium castaneum (Dawson 1967) among insects or in Isotoma (James 1965) and Oenothera (Cleland 1972) among plants. The latter instance involves translocation heterozygosity (i.e., exchanges of segments between nonhomologous chromosomes). Although translocation-heterozygosity systems might arise by hybridization between populations having fixed alternative genotypes by drift, or following strong inbreeding in selfing populations (de Waal Malefijt and Charlesworth 1979), drift cannot account for the evolution of homozygote lethality, and the inbreeding hypothesis needs unrealistically high mutation rates and inbreeding levels to be relevant for Triturus (de Waal Malefijt and Charlesworth 1979).

An interesting situation, also involving sex chromosomes, occurs in the mole vole Ellobius lutescens. The species displays an uneven number of chromosomes (2n = 17), both sexes being X0 (Iyapunova and Vorontsov 1975; Fredga 1994). Hence, embryos are 25% XX, 25% X0, and 50% X0, with only X0 surviving. Whatever its evolutionary causes, this system is, however, less costly than the one under study, because embryonic mortality occurs well before the female has completed her reproductive investment. In Triturus cristatus, in contrast, the full investment is wasted.

Some amphibians are known to sacrifice some of their potential fertility as a part of their reproductive strategy. In the strawberry poison frog Oophaga pumilio (= Dendrobates pumilio), for instance, only 12% of the eggs laid by a female are fertilized and develop into tadpoles. The other eggs remain unfertilized and are used to feed developing larvae (Weygoldt 1980; Brust 1993). However, specific maternal oviposition strategies make sure that this investment will not benefit non-kin. In the case of T. cristatus, many unrelated females congregate in the same ponds to lay eggs, which makes it highly unlikely that nondeveloping embryos might preferentially benefit kin. In addition, T. cristatus larvae show no interest in dying embryos (P. Joly, personal communication), which are in any case protected from consumption by egg capsules. The balanced lethal system of crested newts is thus very likely to be maladaptive.

From our analyses, such a system might have evolved.

Figure 3: Outcomes of simulations as a function of environmental variance for six different population sizes (N = 50, 100, 500, 1,000, 5,000, 10,000) and three different mutation scenarios: no masculinizing mutation (A), masculinizing mutations occurring after generation 5,000 (B). Color areas indicate the frequencies of different outcomes out of 100 simulations. White areas: extinctions. Dark green areas: mMY_1,Y_1 fixed in both sexes (temperature-dependent sex determination [TSD] with lethal system). Pale green areas: mMY_1,Y_1 males and females and mMYXY_2 females (mixed female heterogamy with increased Y frequency and lethal system). Violet areas: MMXX females and MMXY_2 males (male heterogamy). Red areas: MMXX in both sexes (TSD without lethal system). Blue areas: mMY_1,Y_2 females and mMY_1,Y_2 males (male heterogamy on chromosome 4, with balanced lethal system on chromosome 1).
during a sex chromosome turnover induced by environmental changes. Three main mechanisms have been proposed for sex chromosome turnover, relying, respectively, on neutral processes (Scudo 1967; Bull and Charnov 1977), sex ratio selection (Hamilton 1967; Charnov 1982; Werren and Beukeboom 1998; Gauvet et al. 2000; Kozielska et al. 2006; Gossen et al. 2011), and intrinsic benefits of the new sex-determining system (Bull and Charnov 1977; Orzack et al. 1980; Basolo 2001; Kraak and Pen 2002), which might stem from linkage to sex-antagonistic mutations (van Doorn and Kirkpatrick 2007). Neutral processes can be safely excluded in our case because of the strong fitness costs of this system: selective forces implied must have been strong to overcome the fitness costs of the balanced lethal system nowadays fixed. Intrinsic benefits to the new sex chromosomes, in particular through sex-antagonistic genes, are also unlikely to have driven this specific transition because the X, rather than Y, should have been fixed on the ancient pair (van Doorn and Kirkpatrick 2007).

Sex ratio selection thus appears as the most likely scenario, as our simulations also confirm. The balanced lethal system was actually fixed with high likelihood in some of our simulations sets, whenever the following two conditions were met. First, a polymorphism must preexist on the Y chromosome, with different haplotypes having fixed different deleterious mutations (such that homozygotes are lethal, while heterozygotes are viable and fully fertile). This corresponds quite precisely to the situation documented in Pecilia reticulata (Haskins et al. 1970 and references therein), in which several Y haplotypes that segregate in natural populations, coding for different color morphs, have been shown to be homozygous lethal. Even though the differential segment is short in puppies, it already shows some cytogenetic differentiation, with a conspicuous heterochromatic region that differs between Y haplotypes (Traut and Winking 2001). Polymorphic Y chromosomes have been documented in other species of fishes (e.g., in rainbow trout; Felip et al. 2004) and amphibians (e.g., Schmid et al. 1990; Miura 1994). Given the high drift and frequent selective sweeps expected to occur in Y chromosomes (owing to reduced effective sizes and absence of recombination), specific mechanisms might be required for the long-term maintenance of such polymorphisms. Sexual selection is a potential candidate: in natural populations of Pecilia parae, for instance, female preference for rare morphs mediates the coexistence of five distinct Y haplotypes, coding for distinct color morphs (Lindholm et al. 2004; Hurtado-Gonzales and Uy 2010). Alternatively, such a polymorphism might stem from secondary contacts between isolated lineages. Different populations of the female-heterogametic populations of wrinkled frog Rana rugosa (Miura et al. 2012) harbor different W haplotypes (Wˆ1 and Wˆ2), fixed for different deleterious mutations. Experimentally produced WW females are viable only if heterozygous for this haplotype (Wˆ1Wˆ2). Note that the two haplotypes YˆX and YˆY must also present divergent inversion patterns (evolved either as a cause or as a consequence of XY recombination arrest) for recombination to be also arrested between them.

Second, environmental changes with feminizing effects must eliminate the ancestral X chromosome before a new masculinizing mutation appears (so that the population passes through a transient state of TSD). In the case of T. cristatus, with known thermal dependence of sex ratios (Wallace and Wallace 2000), such a shift might simply arise from a temperature drop (stemming either from climatic change or from a range expansion). The condition for the elimination of the X, however, was met only within a specific domain of population size and environmental variance (blue areas in fig. 3C). Population sizes and/or environmental variances that were too small resulted in extinctions due to biased and stochastic sex ratios during the TSD episode (white areas in fig. 3C). In contrast, too large a variance (mostly at large N) prevented elimination of the X, which made populations turn back to the initial XY system after fixation of the masculinizing mutation M (violet areas in fig. 3C). For the same reason, the XY system was maintained throughout, whenever the masculinizing mutation M appeared before X had any chance to be lost. These conditions for the balanced lethal system to evolve, however, did not require particularly small population sizes (N from 500 to >10,000), provided other conditions were met.

We assumed sex-reversed XY females to be fully fertile, which might not be the case in sex-reversed "mM" females (sex-reversed T. cristatus have been shown to have lower fitness; Wallace et al. 1997). Such an assumption, however, is conservative because low-fertility XY females would actually increase the probability of losing the X and thereby the probability of fixation of the balanced lethal system. Once the X was lost and the population was in a YˆY system, TSD system (dark green in fig. 2), it had to survive a period of female-biased sex ratios, which, in some simulations, lasted for more than 2,000 generations. This certainly reduced effective population sizes but had little effect on population dynamics, given the promiscuous mating system of newts. Female biases in such cases might even boost population growth (Rankin and Kokko 2007), by increasing the absolute number of reproducing females, for a fixed carrying capacity.

This arrested-growth syndrome provides a good example of a maladaptive trait evolving through natural selection. As our simulations suggest, evolutionary outcomes as bizarre and seemingly maladaptive as the balanced lethal system of crested newts might actually be the predictable consequence of sex ratio selection (here induced by en-
vironmental changes, given gene-environment interactions on sex determination. We are not claiming, however, that our simulations provide a general scenario for the evolution of balanced lethal systems: these remain exceptional events, resulting from exceptional circumstances. The fixation of similar systems in Oenothera, D. tropicalis, or E. lutescens certainly occurred via alternative and species-specific pathways. In addition, a proper test of the scenario proposed here for T. cristatus will be difficult. The alternative scenarios (Sims et al. 1984; Wallace 1987; Sessions et al. 1988) should receive a similar formalization, in order to compare their likelihood with that of our hypothesis. Additional support might come from genomic and molecular investigations aimed at testing whether some of the genes left on chromosomal pair 1 are involved in the sex-determining cascade. The patterns of homologies between sex-linked genes in the Triturus phylogeny might similarly provide some insights. Sex has been assigned to a diversity of chromosome pairs in this genus (e.g., pair 2 in T. italicus, pair 4 in T. alpestris, pair 5 in T. vulgaris and T. helveticus; Mancino et al. 1977; Schmid et al. 1979), but homologies between these chromosomes are unknown. In the genus Rana, where homologies are better known, five different chromosome pairs have been co-opted as sex chromosomes, some of them several times independently (Miura 2007). Such a high rate of sex-chromosome turnover in amphibians is bound to blur signatures of past events, posing tough challenges to the testing of evolutionary scenarios.

Acknowledgments

This work was supported by a PhD Fellowship to C.G. from the Faculty of Biology and Medicine (University of Lausanne) and by the Swiss National Science Foundation (grants 31003A-129894 to N.P. and 3100AO-138180/1 to J. Goudet). We would like to thank A. Brelsford and two anonymous reviewers for useful comments on a previous version.

Literature Cited

Balanced Lethal System of Crested Newts E183

Associate Editor: Andy Gardner
Editor: Mark A. McPherk