UZH-Logo

Maintenance Infos

Changes in body core and body surface temperatures during prolonged swimming in water of 10°C—a case report


Rüst, C A; Knechtle, B; Rosemann, T (2012). Changes in body core and body surface temperatures during prolonged swimming in water of 10°C—a case report. Extreme Physiology & Medicine, 1(1):8.

Abstract

BACKGROUND: This case report describes an experienced open-water ultra-endurance athlete swimming in water of 9.9°C for 6 h and 2 min. Methods Before the swim, anthropometric characteristics such as body mass, body height, skinfold thicknesses, and body fat were determined. During and after the swim, body core (rectum) and body surface (forearm and calf) temperatures were continuously recorded. Results The swimmer (53 years old, 110.5 kg body mass, 1.76 m body height, 34.9% body fat, and a body mass index of 35.7 kg/m2) achieved a total distance of 15 km while swimming at a mean speed of 2.48 km/h, equal to 0.69 m/s, in water of 9.9°C. Body core temperature was at 37.8°C before the swim, increased to a maximum of 38.1°C after approximately 20 min of swimming, and then decreased continuously to 36.3°C upon finishing the swim. The lowest body core temperature was 36.0°C between 35 and 60 min after finishing the swim. Sixty minutes after the swim, the body core temperature continuously rose to 36.5°C where it remained. At the forearm, the temperature dropped to 19.6°C after approximately 36 min of swimming and decreased to 19.4°C by the end of the swim. The lowest temperature at the forearm was 17.6°C measured at approximately 47 min before the athlete stopped swimming. At the calf, the temperature dropped to 13.0°C after approximately 24 min of swimming and decreased to 11.9°C at the end of the swim. The lowest temperature measured at the calf was 11.1°C approximately 108 min after the start. In both the forearm and the calf, the skin temperature continuously increased after the swim. Conclusions This case report shows that (1) it is possible to swim for 6 h in water of 9.9°C and that (2) the athlete did not suffer from hypothermia under these circumstances. The high body mass index, high body fat, previous experience, and specific preparation of the swimmer are the most probable explanations for these findings.

BACKGROUND: This case report describes an experienced open-water ultra-endurance athlete swimming in water of 9.9°C for 6 h and 2 min. Methods Before the swim, anthropometric characteristics such as body mass, body height, skinfold thicknesses, and body fat were determined. During and after the swim, body core (rectum) and body surface (forearm and calf) temperatures were continuously recorded. Results The swimmer (53 years old, 110.5 kg body mass, 1.76 m body height, 34.9% body fat, and a body mass index of 35.7 kg/m2) achieved a total distance of 15 km while swimming at a mean speed of 2.48 km/h, equal to 0.69 m/s, in water of 9.9°C. Body core temperature was at 37.8°C before the swim, increased to a maximum of 38.1°C after approximately 20 min of swimming, and then decreased continuously to 36.3°C upon finishing the swim. The lowest body core temperature was 36.0°C between 35 and 60 min after finishing the swim. Sixty minutes after the swim, the body core temperature continuously rose to 36.5°C where it remained. At the forearm, the temperature dropped to 19.6°C after approximately 36 min of swimming and decreased to 19.4°C by the end of the swim. The lowest temperature at the forearm was 17.6°C measured at approximately 47 min before the athlete stopped swimming. At the calf, the temperature dropped to 13.0°C after approximately 24 min of swimming and decreased to 11.9°C at the end of the swim. The lowest temperature measured at the calf was 11.1°C approximately 108 min after the start. In both the forearm and the calf, the skin temperature continuously increased after the swim. Conclusions This case report shows that (1) it is possible to swim for 6 h in water of 9.9°C and that (2) the athlete did not suffer from hypothermia under these circumstances. The high body mass index, high body fat, previous experience, and specific preparation of the swimmer are the most probable explanations for these findings.

Citations

Altmetrics

Downloads

18 downloads since deposited on 20 Feb 2013
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of General Practice
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:20 Feb 2013 09:42
Last Modified:21 Nov 2016 14:03
Publisher:BioMed Central
ISSN:2046-7648
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/2046-7648-1-8
PubMed ID:23849461
Permanent URL: https://doi.org/10.5167/uzh-73716

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 347kB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations