UZH-Logo

Maintenance Infos

A hybrid simulation model for moving objects


Technitis, Georgios; Weibel, Robert (2012). A hybrid simulation model for moving objects. In: The 2012 AutoCarto International Symposium on Automated Cartography, Columbus, Ohio, USA, 16 September 2012 - 18 September 2012, online.

Abstract

Following a discussion of the strengths and weaknesses of the current modeling paradigms used for movement simulation in movement ecology, a hybrid simulation model is proposed that jointly exploits the benefits offered by agent-based models (ABM), discrete event simulation (DES), and system dynamics (SD), respectively, while attempting to limit their drawbacks. We describe the transition from a conceptual model of movement to the logical structure that is able to support the hybrid simulation model. We use examples from ornithology to instantiate the components of the logical model. Compared to traditional movement simulation methods such as correlated random walk, the proposed model can provide a more holistic representation of the movement of objects within their environment, while also maintaining the perspective of the individual object. We argue that this multi-level approach and flexibility is possible through the combination of the capabilities of ABM to model interactions among individuals, with the strengths of DES to model discrete events and global rules, and finally with the capacity of SD to model causality and feedback loops. Additionally, the motivation of an individual, being a core driver of movement, has been embedded into the logical simulation model.

Following a discussion of the strengths and weaknesses of the current modeling paradigms used for movement simulation in movement ecology, a hybrid simulation model is proposed that jointly exploits the benefits offered by agent-based models (ABM), discrete event simulation (DES), and system dynamics (SD), respectively, while attempting to limit their drawbacks. We describe the transition from a conceptual model of movement to the logical structure that is able to support the hybrid simulation model. We use examples from ornithology to instantiate the components of the logical model. Compared to traditional movement simulation methods such as correlated random walk, the proposed model can provide a more holistic representation of the movement of objects within their environment, while also maintaining the perspective of the individual object. We argue that this multi-level approach and flexibility is possible through the combination of the capabilities of ABM to model interactions among individuals, with the strengths of DES to model discrete events and global rules, and finally with the capacity of SD to model causality and feedback loops. Additionally, the motivation of an individual, being a core driver of movement, has been embedded into the logical simulation model.

Downloads

77 downloads since deposited on 20 Feb 2013
27 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), not refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Event End Date:18 September 2012
Deposited On:20 Feb 2013 17:17
Last Modified:05 Apr 2016 16:34
Official URL:http://www.cartogis.org/docs/proceedings/2012/Technitis_Weibel_AutoCarto2012.pdf
Permanent URL: https://doi.org/10.5167/uzh-74665

Download

[img]
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations