UZH-Logo

Maintenance Infos

The C. elegans G-protein-coupled receptor SRA-13 inhibits RAS/MAPK signalling during olfaction and vulval development.


Battu, G; Froehli Hoier, E; Hajnal, A (2003). The C. elegans G-protein-coupled receptor SRA-13 inhibits RAS/MAPK signalling during olfaction and vulval development. Development, 130(12):2567-2577.

Abstract

In C. elegans, the RAS/MAPK pathway is used in different tissues to regulate various cell fate decisions. Several positive and negative regulators tightly control the activity of the RAS/MAPK pathway at different steps. We demonstrate a link between a G-protein-coupled receptor signalling pathway and the RAS/MAPK cascade. SRA-13, a member of the SRA family of chemosensory receptors, negatively regulates RAS/MAPK signalling during vulval induction and the olfaction of volatile attractants. Epistasis analysis indicates that SRA-13 inhibits the RAS/MAPK pathway at the level or upstream of MAPK. In both tissues, the vulval precursor cells and the chemosensory neurones, SRA-13 acts through the GPA-5 Galpha protein subunit, suggesting a common mechanism of crosstalk. Moreover, we find that vulval induction is repressed by food withdrawal during larval development and that SRA-13 activity is required for the suppression of vulval induction in response to food starvation. Thus, SRA-13 may serve to adapt the activity of the RAS/MAPK pathway to environmental conditions.

Abstract

In C. elegans, the RAS/MAPK pathway is used in different tissues to regulate various cell fate decisions. Several positive and negative regulators tightly control the activity of the RAS/MAPK pathway at different steps. We demonstrate a link between a G-protein-coupled receptor signalling pathway and the RAS/MAPK cascade. SRA-13, a member of the SRA family of chemosensory receptors, negatively regulates RAS/MAPK signalling during vulval induction and the olfaction of volatile attractants. Epistasis analysis indicates that SRA-13 inhibits the RAS/MAPK pathway at the level or upstream of MAPK. In both tissues, the vulval precursor cells and the chemosensory neurones, SRA-13 acts through the GPA-5 Galpha protein subunit, suggesting a common mechanism of crosstalk. Moreover, we find that vulval induction is repressed by food withdrawal during larval development and that SRA-13 activity is required for the suppression of vulval induction in response to food starvation. Thus, SRA-13 may serve to adapt the activity of the RAS/MAPK pathway to environmental conditions.

Citations

17 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

94 downloads since deposited on 11 Feb 2008
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 June 2003
Deposited On:11 Feb 2008 12:17
Last Modified:05 Apr 2016 12:15
Publisher:Company of Biologists
ISSN:0950-1991
Publisher DOI:https://doi.org/10.1242/dev.00497
PubMed ID:12736202

Download

[img]
Preview
Filetype: PDF
Size: 586kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations