UZH-Logo

Maintenance Infos

EGF signal propagation during C. elegans vulval development mediated by ROM-1 rhomboid


Dutt, A; Canevascini, S; Fröhli-Hoier, E; Hajnal, A (2004). EGF signal propagation during C. elegans vulval development mediated by ROM-1 rhomboid. PLoS Biology, 2(11):e344.

Abstract

During Caenorhabditis elegans vulval development, the anchor cell (AC) in the somatic gonad secretes an epidermal growth factor (EGF) to activate the EGF receptor (EGFR) signaling pathway in the adjacent vulval precursor cells (VPCs). The inductive AC signal specifies the vulval fates of the three proximal VPCs P5.p, P6.p, and P7.p. The C. elegans Rhomboid homolog ROM-1 increases the range of EGF, allowing the inductive signal to reach the distal VPCs P3.p, P4.p and P8.p, which are further away from the AC. Surprisingly, ROM-1 functions in the signal-receiving VPCs rather than the signal-sending AC. This observation led to the discovery of an AC-independent activity of EGF in the VPCs that promotes vulval cell fate specification and depends on ROM-1. Of the two previously reported EGF splice variants, the longer one requires ROM-1 for its activity, while the shorter form acts independently of ROM-1. We present a model in which ROM-1 relays the inductive AC signal from the proximal to the distal VPCs by allowing the secretion of the LIN-3L splice variant. These results indicate that, in spite of their structural diversity, Rhomboid proteins play a conserved role in activating EGFR signaling in C. elegans, Drosophila, and possibly also in mammals.

Abstract

During Caenorhabditis elegans vulval development, the anchor cell (AC) in the somatic gonad secretes an epidermal growth factor (EGF) to activate the EGF receptor (EGFR) signaling pathway in the adjacent vulval precursor cells (VPCs). The inductive AC signal specifies the vulval fates of the three proximal VPCs P5.p, P6.p, and P7.p. The C. elegans Rhomboid homolog ROM-1 increases the range of EGF, allowing the inductive signal to reach the distal VPCs P3.p, P4.p and P8.p, which are further away from the AC. Surprisingly, ROM-1 functions in the signal-receiving VPCs rather than the signal-sending AC. This observation led to the discovery of an AC-independent activity of EGF in the VPCs that promotes vulval cell fate specification and depends on ROM-1. Of the two previously reported EGF splice variants, the longer one requires ROM-1 for its activity, while the shorter form acts independently of ROM-1. We present a model in which ROM-1 relays the inductive AC signal from the proximal to the distal VPCs by allowing the secretion of the LIN-3L splice variant. These results indicate that, in spite of their structural diversity, Rhomboid proteins play a conserved role in activating EGFR signaling in C. elegans, Drosophila, and possibly also in mammals.

Citations

34 citations in Web of Science®
35 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

73 downloads since deposited on 11 Feb 2008
22 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 November 2004
Deposited On:11 Feb 2008 12:17
Last Modified:01 Oct 2016 07:13
Publisher:Public Library of Science (PLoS)
ISSN:1544-9173
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pbio.0020334
PubMed ID:15455032

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations