UZH-Logo

Maintenance Infos

Function approximation with uncertainty propagation in a VLSI spiking neural network


Corneil, D; Sonnleithner, D; Neftci, E; Chicca, E; Cook, M; Indiveri, G; Douglas, R (2012). Function approximation with uncertainty propagation in a VLSI spiking neural network. In: IEEE International Joint Conference on Neural Networks (IJCNN) 2012 , Brisbane, Australia, 10 June 2012 - 15 June 2012, 1-7.

Abstract

The brain combines and integrates multiple cues to take coherent, context-dependent action using distributed, event-based computational primitives. Computational models that use these principles in software simulations of recurrently coupled spiking neural networks have been demonstrated in the past, but their implementation in hybrid analog/digital Very Large Scale Integration (VLSI) spiking neural networks remains challenging. Here, we demonstrate a distributed spiking neural network architecture comprising multiple neuromorphic VLSI chips able to reproduce these types of cue combination and integration operations. This is achieved by encoding cues as population activities of input nodes in a network of recurrently coupled VLSI Integrate-and-Fire (I&F) neurons. The value of the cue is place-encoded, while its uncertainty is represented by the width of the population activity profile. Relationships among different cues are specified through bidirectional connectivity matrices, shared between the individual input node populations and an intermediate node population. The resulting network dynamics bidirectionally relate not only the values of three variables according to a specified relation, but also their uncertainties. When cues on two populations are specified, the standard deviation of the activity in the unspecified population varies approximately linearly with the widths of the two input cues, and has less than 6% error in position compared to the value specified by the inputs. The results suggest a mechanism for recurrently relating cues such that missing information can both be recovered and assigned a level of certainty.

The brain combines and integrates multiple cues to take coherent, context-dependent action using distributed, event-based computational primitives. Computational models that use these principles in software simulations of recurrently coupled spiking neural networks have been demonstrated in the past, but their implementation in hybrid analog/digital Very Large Scale Integration (VLSI) spiking neural networks remains challenging. Here, we demonstrate a distributed spiking neural network architecture comprising multiple neuromorphic VLSI chips able to reproduce these types of cue combination and integration operations. This is achieved by encoding cues as population activities of input nodes in a network of recurrently coupled VLSI Integrate-and-Fire (I&F) neurons. The value of the cue is place-encoded, while its uncertainty is represented by the width of the population activity profile. Relationships among different cues are specified through bidirectional connectivity matrices, shared between the individual input node populations and an intermediate node population. The resulting network dynamics bidirectionally relate not only the values of three variables according to a specified relation, but also their uncertainties. When cues on two populations are specified, the standard deviation of the activity in the unspecified population varies approximately linearly with the widths of the two input cues, and has less than 6% error in position compared to the value specified by the inputs. The results suggest a mechanism for recurrently relating cues such that missing information can both be recovered and assigned a level of certainty.

Altmetrics

Additional indexing

Item Type:Conference or Workshop Item (Speech), refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Event End Date:15 June 2012
Deposited On:27 Feb 2013 16:30
Last Modified:05 Apr 2016 16:36
Publisher:IEEE
Series Name:Proceedings of the International Joint Conference on Neural Networks
Number of Pages:7
ISSN:2161-4393
ISBN:978-1-4673-1489-3
Publisher DOI:https://doi.org/10.1109/IJCNN.2012.6252780

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations