UZH-Logo

Maintenance Infos

Online spatio-temporal pattern recognition with evolving spiking neural networks utilising address event representation, rank order, and temporal spike learning


Dhoble, K; Nuntalid, N; Indiveri, G; Kasabov, N (2012). Online spatio-temporal pattern recognition with evolving spiking neural networks utilising address event representation, rank order, and temporal spike learning. Proceedings of the International Joint Conference on Neural Networks:554-560.

Abstract

Evolving spiking neural networks (eSNN) are computational models that evolve new spiking neurons and new connections from incoming data to learn patterns from them in an on-line mode. With the development of new techniques to capture spatio- and spectro-temporal data in a fast on-line mode, using for example address event representation (AER) such as the implemented one in the artificial retina and the artificial cochlea chips, and with the available SNN hardware technologies, new and more efficient methods for spatio-temporal pattern recognition (STPR) are needed. The paper introduces a new eSNN model dynamic eSNN (deSNN), that utilises both rank-order spike coding (ROSC), also known as time to first spike, and temporal spike coding (TSC). Each of these representations are implemented through different learning mechanisms - RO learning, and temporal spike learning - spike driven synaptic plasticity (SDSP) rule. The deSNN model is demonstrated on a small scale moving object classification problem when AER data is collected with the use of an artificial retina camera. The new model is superior in terms of learning time and accuracy for learning. It makes use of the order of spikes input information which is explicitly present in the AER data, while a temporal spike learning rule accounts for any consecutive spikes arriving on the same synapse that represent temporal components in the learned spatio-temporal pattern.

Abstract

Evolving spiking neural networks (eSNN) are computational models that evolve new spiking neurons and new connections from incoming data to learn patterns from them in an on-line mode. With the development of new techniques to capture spatio- and spectro-temporal data in a fast on-line mode, using for example address event representation (AER) such as the implemented one in the artificial retina and the artificial cochlea chips, and with the available SNN hardware technologies, new and more efficient methods for spatio-temporal pattern recognition (STPR) are needed. The paper introduces a new eSNN model dynamic eSNN (deSNN), that utilises both rank-order spike coding (ROSC), also known as time to first spike, and temporal spike coding (TSC). Each of these representations are implemented through different learning mechanisms - RO learning, and temporal spike learning - spike driven synaptic plasticity (SDSP) rule. The deSNN model is demonstrated on a small scale moving object classification problem when AER data is collected with the use of an artificial retina camera. The new model is superior in terms of learning time and accuracy for learning. It makes use of the order of spikes input information which is explicitly present in the AER data, while a temporal spike learning rule accounts for any consecutive spikes arriving on the same synapse that represent temporal components in the learned spatio-temporal pattern.

Citations

Altmetrics

Downloads

35 downloads since deposited on 07 Mar 2013
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:07 Mar 2013 09:30
Last Modified:05 Apr 2016 16:36
Publisher:IEEE
Number of Pages:7
ISSN:2161-4393
Additional Information:ISBN 978-1-4673-1489-3. © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Publisher DOI:https://doi.org/10.1109/IJCNN.2012.6252439

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations