UZH-Logo

Maintenance Infos

Quantitative perfusion analysis of malignant liver tumors: dynamic computed tomography and contrast-enhanced ultrasound


Goetti, R; Reiner, C S; Knuth, A; Klotz, E; Stenner, F; Samaras, P; Alkadhi, H (2012). Quantitative perfusion analysis of malignant liver tumors: dynamic computed tomography and contrast-enhanced ultrasound. Investigative Radiology, 47(1):18-24.

Abstract

OBJECTIVE: To prospectively analyze the correlation between quantitative parameters of perfusion derived from dynamic contrast-enhanced CT (DCE-CT) and contrast-enhanced ultrasound (DCE-US) in patients with malignant liver tumors. MATERIALS AND METHODS: Thirty patients (mean age: 59.4 ± 12.3 years) with primary malignant liver tumors or hepatic metastases of various origin underwent DCE-CT (4D spiral mode, scan range, 14.8 cm; 15 scans; cycle time, 3 seconds) and DCE-US (low mechanical index, <0.1, 2.4 mL microbubbles). DCE-CT and DCE-US images were evaluated by 2 radiologists regarding quantitative perfusion parameters including arterial liver perfusion (ALP), portal-venous perfusion (PVP), and total perfusion (P = ALP + PVP) from DCE-CT, as well as blood inflow velocity (B) and the normalized slope within the calculation range (CVan) from DCE-US. RESULTS: Quantitative assessment was possible with DCE-CT in 12/30 (40%) patients before and in all patients after automated motion correction. With DCE-US, quantitative assessment could not be performed in 9/30 (30.0%) patients due to respiratory motion. Interreader agreements for quantitative perfusion analysis were good with DCE-CT (r = 0.640-0.892, each P < 0.001) and DCE-US (r = 0.761-0.909, each P < 0.001). Moderate significant correlations were found between the perfusion parameters from DCE-CT (P, ALP) and DCE-US (B, CVan) (r = 0.446-0.621, each P < 0.05). No significant correlations were found between PVP from CT and perfusion parameters from DCE-US (B, CVan; each P = nonsignificant). CONCLUSIONS: Quantitative evaluation of DCE-CT data was feasible in all patients after automated motion correction, whereas DCE-US data could not be quantitatively evaluated in 30% of patients due to respiratory motion and lack of motion correction software. Quantitative arterial perfusion analysis showed moderate significant correlations for blood flow parameters among modalities.

Abstract

OBJECTIVE: To prospectively analyze the correlation between quantitative parameters of perfusion derived from dynamic contrast-enhanced CT (DCE-CT) and contrast-enhanced ultrasound (DCE-US) in patients with malignant liver tumors. MATERIALS AND METHODS: Thirty patients (mean age: 59.4 ± 12.3 years) with primary malignant liver tumors or hepatic metastases of various origin underwent DCE-CT (4D spiral mode, scan range, 14.8 cm; 15 scans; cycle time, 3 seconds) and DCE-US (low mechanical index, <0.1, 2.4 mL microbubbles). DCE-CT and DCE-US images were evaluated by 2 radiologists regarding quantitative perfusion parameters including arterial liver perfusion (ALP), portal-venous perfusion (PVP), and total perfusion (P = ALP + PVP) from DCE-CT, as well as blood inflow velocity (B) and the normalized slope within the calculation range (CVan) from DCE-US. RESULTS: Quantitative assessment was possible with DCE-CT in 12/30 (40%) patients before and in all patients after automated motion correction. With DCE-US, quantitative assessment could not be performed in 9/30 (30.0%) patients due to respiratory motion. Interreader agreements for quantitative perfusion analysis were good with DCE-CT (r = 0.640-0.892, each P < 0.001) and DCE-US (r = 0.761-0.909, each P < 0.001). Moderate significant correlations were found between the perfusion parameters from DCE-CT (P, ALP) and DCE-US (B, CVan) (r = 0.446-0.621, each P < 0.05). No significant correlations were found between PVP from CT and perfusion parameters from DCE-US (B, CVan; each P = nonsignificant). CONCLUSIONS: Quantitative evaluation of DCE-CT data was feasible in all patients after automated motion correction, whereas DCE-US data could not be quantitatively evaluated in 30% of patients due to respiratory motion and lack of motion correction software. Quantitative arterial perfusion analysis showed moderate significant correlations for blood flow parameters among modalities.

Citations

26 citations in Web of Science®
26 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Other titles:
Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Oncology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:January 2012
Deposited On:12 Mar 2013 10:20
Last Modified:05 Apr 2016 16:38
Publisher:Lippincott, Williams & Wilkins
ISSN:0020-9996
Publisher DOI:https://doi.org/10.1097/RLI.0b013e318229ff0d
PubMed ID:21788906

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations