UZH-Logo

Maintenance Infos

The distributed slow control system of the XENON100 experiment


XENON100 Collaboration; Behrens, A; Ferella, A D; Kish, A; Marrodan Undagoitia, T; Schumann, M; Baudis, L (2012). The distributed slow control system of the XENON100 experiment. Journal of Instrumentation, 7(12):T12001.

Abstract

The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, was designed to search for evidence of dark matter interactions inside a volume of liquid xenon using a dual-phase time projection chamber. This paper describes the Slow Control System (SCS) of the experiment with emphasis on the distributed architecture as well as on its modular and expandable nature. The system software was designed according to the rules of Object-Oriented Programming and coded in Java, thus promoting code reusability and maximum flexibility during commissioning of the experiment. The SCS has been continuously monitoring the XENON100 detector since mid 2008, remotely recording hundreds of parameters on a few dozen instruments in real time, and setting emergency alarms for the most important variables.

The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, was designed to search for evidence of dark matter interactions inside a volume of liquid xenon using a dual-phase time projection chamber. This paper describes the Slow Control System (SCS) of the experiment with emphasis on the distributed architecture as well as on its modular and expandable nature. The system software was designed according to the rules of Object-Oriented Programming and coded in Java, thus promoting code reusability and maximum flexibility during commissioning of the experiment. The SCS has been continuously monitoring the XENON100 detector since mid 2008, remotely recording hundreds of parameters on a few dozen instruments in real time, and setting emergency alarms for the most important variables.

Citations

1 citation in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

31 downloads since deposited on 12 Mar 2013
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2012
Deposited On:12 Mar 2013 14:47
Last Modified:05 Apr 2016 16:38
Publisher:IOP Publishing
ISSN:1748-0221
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1088/1748-0221/7/12/T12001
Permanent URL: https://doi.org/10.5167/uzh-75721

Download

[img]
Preview
Filetype: PDF
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations