UZH-Logo

Maintenance Infos

Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila.


Peng, J; Chen, S; Büsser, S; Liu, H; Honegger, T; Kubli, E (2005). Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Current Biology, 15(3):207-213.

Abstract

BACKGROUND: In many female insects, peptides transferred in the seminal fluid induce postmating responses (PMR), such as a drastic increase of egg laying and reduction of receptivity (readiness to mate). In Drosophila melanogaster, sex-peptide (SP) elicits short- and long-term PMR, but only the latter in the presence of stored sperm (sperm effect). RESULTS: Here, we elucidate the interaction between SP and sperm by immunofluorescence microscopy. Transgenic males were used to study the effects of SP modification on the PMR of females in vivo. We report that SP binds to sperm with its N-terminal end. In females, the C-terminal part of SP known to be essential to induce the PMR is gradually released from stored sperm by cleavage at a trypsin cleavage site, thus prolonging the PMR. These findings are confirmed by analyzing the PMR elicited by males containing transgenes encoding modified SPs. SP lacking the N-terminal end cannot bind, and SP without the trypsin cleavage site binds permanently to sperm. CONCLUSION: By binding to sperm tails, SP prolongs the PMR. Thus, besides a carrier for genetic information, sperm is also the carrier for SP. Binding to sperm may protect the peptide from degradation by proteases in the hemolymph and, thus, prolong its half-life. Longer sperm tails may transfer more SP and thus increase the reproductive fitness of the male. We suggest that this could explain the excessive length of sperm tails in some Drosophila species.

BACKGROUND: In many female insects, peptides transferred in the seminal fluid induce postmating responses (PMR), such as a drastic increase of egg laying and reduction of receptivity (readiness to mate). In Drosophila melanogaster, sex-peptide (SP) elicits short- and long-term PMR, but only the latter in the presence of stored sperm (sperm effect). RESULTS: Here, we elucidate the interaction between SP and sperm by immunofluorescence microscopy. Transgenic males were used to study the effects of SP modification on the PMR of females in vivo. We report that SP binds to sperm with its N-terminal end. In females, the C-terminal part of SP known to be essential to induce the PMR is gradually released from stored sperm by cleavage at a trypsin cleavage site, thus prolonging the PMR. These findings are confirmed by analyzing the PMR elicited by males containing transgenes encoding modified SPs. SP lacking the N-terminal end cannot bind, and SP without the trypsin cleavage site binds permanently to sperm. CONCLUSION: By binding to sperm tails, SP prolongs the PMR. Thus, besides a carrier for genetic information, sperm is also the carrier for SP. Binding to sperm may protect the peptide from degradation by proteases in the hemolymph and, thus, prolong its half-life. Longer sperm tails may transfer more SP and thus increase the reproductive fitness of the male. We suggest that this could explain the excessive length of sperm tails in some Drosophila species.

Citations

130 citations in Web of Science®
134 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Zoology (former)
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:8 February 2005
Deposited On:11 Feb 2008 12:18
Last Modified:05 Apr 2016 12:15
Publisher:Elsevier
ISSN:0960-9822
Publisher DOI:10.1016/j.cub.2005.01.034
PubMed ID:15694303

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations