UZH-Logo

Maintenance Infos

Triggering of specific Toll-like receptors and proinflammatory cytokines breaks allergen-specific T-cell tolerance in human tonsils and peripheral blood


Kücüksezer, Umut Can; Palomares, Oscar; Rückert, Beate; Jartti, Tuomas; Puhakka, Tuomo; Nandy, Andreas; Gemicioğlu, Bilun; Fahrner, Heinz B; Jung, Andreas; Deniz, Günnur; Akdis, Cezmi A; Akdis, Mübeccel (2013). Triggering of specific Toll-like receptors and proinflammatory cytokines breaks allergen-specific T-cell tolerance in human tonsils and peripheral blood. Journal of Allergy and Clinical Immunology, 131(3):875-885.e9.

Abstract

BACKGROUND: The generation and maintenance of allergen-specific T-cell tolerance is a key step in healthy immune responses to allergens and successful allergen-specific immunotherapy. Breaking of peripheral T-cell tolerance to allergens can lead to the development of allergies, but the mechanisms are not completely understood. OBJECTIVE: We sought to identify molecular mechanisms that break allergen-specific T-cell tolerance in human subjects. METHODS: Proliferative responses of allergen-specific T cells from tonsils and peripheral blood were measured by using tritiated thymidine incorporation and carboxyfluorescein succinimidyl ester (CFSE) dilution experiments. Cytokine levels in cell-free supernatants were quantified by using the cytometric bead array, and mRNA expression of transcription factors and cytokines was determined by using quantitative PCR. Myeloid dendritic cells (DCs) were characterized by using flow cytometry. RESULTS: In allergic patients the immune profile of the tonsils represents the atopic status of patients, with low expression of the T(H)1 cell-specific transcription factor T-bet and the cytokine IFN-γ, as well as IL-10. Human tonsils show very low levels of allergen-induced T-cell proliferation, thus representing a very suitable in vivo model to assess mechanisms of breaking allergen-specific T-cell tolerance. Triggering of Toll-like receptor (TLR) 4 or TLR8 and the proinflammatory cytokines IL-1β or IL-6 break allergen-specific T-cell tolerance in human tonsils and peripheral blood through a mechanism dependent on the adaptor molecule myeloid differentiation primary response gene (88) (MyD88). In particular, myeloid DCs and stimulations that activate them broke the tolerance of allergen-specific CD4(+) T cells, whereas plasmacytoid DCs and stimulations that activate them, such as TLR7 and TLR9, did not have any effect. Tolerance-breaking conditions induced by different molecular mechanisms were associated with a mixed cytokine profile with a tendency toward increased levels of IL-13 and IL-17, which are T(H)2 and T(H)17 cytokines, respectively. CONCLUSION: Certain innate immune response signals and proinflammatory cytokines break allergen-specific CD4(+) T-cell tolerance in normally unresponsive subjects, which might lead to the development or exacerbation of allergic diseases after encountering microbes or inflammatory conditions.

BACKGROUND: The generation and maintenance of allergen-specific T-cell tolerance is a key step in healthy immune responses to allergens and successful allergen-specific immunotherapy. Breaking of peripheral T-cell tolerance to allergens can lead to the development of allergies, but the mechanisms are not completely understood. OBJECTIVE: We sought to identify molecular mechanisms that break allergen-specific T-cell tolerance in human subjects. METHODS: Proliferative responses of allergen-specific T cells from tonsils and peripheral blood were measured by using tritiated thymidine incorporation and carboxyfluorescein succinimidyl ester (CFSE) dilution experiments. Cytokine levels in cell-free supernatants were quantified by using the cytometric bead array, and mRNA expression of transcription factors and cytokines was determined by using quantitative PCR. Myeloid dendritic cells (DCs) were characterized by using flow cytometry. RESULTS: In allergic patients the immune profile of the tonsils represents the atopic status of patients, with low expression of the T(H)1 cell-specific transcription factor T-bet and the cytokine IFN-γ, as well as IL-10. Human tonsils show very low levels of allergen-induced T-cell proliferation, thus representing a very suitable in vivo model to assess mechanisms of breaking allergen-specific T-cell tolerance. Triggering of Toll-like receptor (TLR) 4 or TLR8 and the proinflammatory cytokines IL-1β or IL-6 break allergen-specific T-cell tolerance in human tonsils and peripheral blood through a mechanism dependent on the adaptor molecule myeloid differentiation primary response gene (88) (MyD88). In particular, myeloid DCs and stimulations that activate them broke the tolerance of allergen-specific CD4(+) T cells, whereas plasmacytoid DCs and stimulations that activate them, such as TLR7 and TLR9, did not have any effect. Tolerance-breaking conditions induced by different molecular mechanisms were associated with a mixed cytokine profile with a tendency toward increased levels of IL-13 and IL-17, which are T(H)2 and T(H)17 cytokines, respectively. CONCLUSION: Certain innate immune response signals and proinflammatory cytokines break allergen-specific CD4(+) T-cell tolerance in normally unresponsive subjects, which might lead to the development or exacerbation of allergic diseases after encountering microbes or inflammatory conditions.

Citations

31 citations in Web of Science®
40 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > Swiss Institute of Allergy and Asthma Research
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:04 Mar 2013 12:54
Last Modified:05 Apr 2016 16:39
Publisher:Elsevier
ISSN:0091-6749
Publisher DOI:https://doi.org/10.1016/j.jaci.2012.10.051
PubMed ID:23265862

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations