UZH-Logo

Maintenance Infos

Energy in-equivalence in australian marsupials: evidence for disruption of the continent’s mammal assemblage, or are rules meant to be broken?


Seebacher, Frank; Munn, Adam J; Dunne, Craig; Müller, Dennis W H; Clauss, Marcus (2013). Energy in-equivalence in australian marsupials: evidence for disruption of the continent’s mammal assemblage, or are rules meant to be broken? PLoS ONE, 8(2):e57449.

Abstract

The energy equivalence rule (EER) is a macroecological hypothesis that posits that total population energy use (PEU) should be independent of species body mass, because population densities and energy metabolisms scale with body mass in a directly inverse manner. However, evidence supporting the EER is equivocal, and the use of basal metabolic rate (BMR) in such studies has been questioned; ecologically-relevant indices like field metabolic rate (FMR) are probably more appropriate. In this regard, Australian marsupials present a novel test for the EER because, unlike eutherians, marsupial BMRs and FMRs scale differently with body mass. Based on either FMR or BMR, Australian marsupial PEU did not obey an EER, and scaled positively with body mass based on ordinary least squares (OLS) regressions. Importantly, the scaling of marsupial population density with body mass had a slope of 20.37, significantly shallower than the expected slope of 20.75, and not directly inverse of body-mass scaling exponents for BMR (0.72) or FMR (0.62). The findings suggest that the EER may not be a causal, universal rule, or that for reasons not yet clear, it is not operating for Australia’s unique native fauna.

The energy equivalence rule (EER) is a macroecological hypothesis that posits that total population energy use (PEU) should be independent of species body mass, because population densities and energy metabolisms scale with body mass in a directly inverse manner. However, evidence supporting the EER is equivocal, and the use of basal metabolic rate (BMR) in such studies has been questioned; ecologically-relevant indices like field metabolic rate (FMR) are probably more appropriate. In this regard, Australian marsupials present a novel test for the EER because, unlike eutherians, marsupial BMRs and FMRs scale differently with body mass. Based on either FMR or BMR, Australian marsupial PEU did not obey an EER, and scaled positively with body mass based on ordinary least squares (OLS) regressions. Importantly, the scaling of marsupial population density with body mass had a slope of 20.37, significantly shallower than the expected slope of 20.75, and not directly inverse of body-mass scaling exponents for BMR (0.72) or FMR (0.62). The findings suggest that the EER may not be a causal, universal rule, or that for reasons not yet clear, it is not operating for Australia’s unique native fauna.

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

32 downloads since deposited on 19 Mar 2013
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Language:English
Date:2013
Deposited On:19 Mar 2013 14:15
Last Modified:18 Nov 2016 08:13
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0057449
PubMed ID:23460858
Permanent URL: https://doi.org/10.5167/uzh-76064

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 203kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations