UZH-Logo

Maintenance Infos

The influence of disturbance events on survival and dispersal rates of Florida box turtles


Dodd, C K; Ozgul, Arpat; Oli, M K (2006). The influence of disturbance events on survival and dispersal rates of Florida box turtles. Ecological Applications, 16(5):1936-1944.

Abstract

Disturbances have the potential to cause long-term effects to ecosystem structure and function, and they may affect individual species in different ways. Long-lived vertebrates such as turtles may be at risk from such events, inasmuch as their life histories preclude rapid recovery should extensive mortality occur. We applied capture-mark-recapture models to assess disturbance effects on a population of Florida box turtles (Terrapene carolina bauri) on Egmont Key, Florida, USA. Near the midpoint of the study, a series of physical disturbances affected the island, from salt water overwash associated with several tropical storms to extensive removal of nonindigenous vegetation. These disturbances allowed us to examine demographic responses of the turtle population and to determine if they affected dispersal throughout the island. Adult survival rates did not vary significantly either between sexes or among years of the study. Survival rates did not vary significantly between juvenile and adult turtles, or among years of the study. Furthermore, neither adult nor juvenile survival rates differed significantly between pre- and post-disturbance. However, dispersal rates varied significantly among the four major study sites, and dispersal rates were higher during the pre-disturbance sampling periods compared to post-disturbance. Our results suggest few long-term effects on the demography of the turtle population. Florida box turtles responded to tropical storms and vegetation control, by moving to favorable habitats minimally affected by the disturbances and remaining there. As long as turtles and perhaps other long-lived vertebrates can disperse to non-disturbed habitat, and high levels of mortality do not occur in a population, a long life span may allow them to wait out the impact of disturbance with potentially little effect on long-term population processes.

Abstract

Disturbances have the potential to cause long-term effects to ecosystem structure and function, and they may affect individual species in different ways. Long-lived vertebrates such as turtles may be at risk from such events, inasmuch as their life histories preclude rapid recovery should extensive mortality occur. We applied capture-mark-recapture models to assess disturbance effects on a population of Florida box turtles (Terrapene carolina bauri) on Egmont Key, Florida, USA. Near the midpoint of the study, a series of physical disturbances affected the island, from salt water overwash associated with several tropical storms to extensive removal of nonindigenous vegetation. These disturbances allowed us to examine demographic responses of the turtle population and to determine if they affected dispersal throughout the island. Adult survival rates did not vary significantly either between sexes or among years of the study. Survival rates did not vary significantly between juvenile and adult turtles, or among years of the study. Furthermore, neither adult nor juvenile survival rates differed significantly between pre- and post-disturbance. However, dispersal rates varied significantly among the four major study sites, and dispersal rates were higher during the pre-disturbance sampling periods compared to post-disturbance. Our results suggest few long-term effects on the demography of the turtle population. Florida box turtles responded to tropical storms and vegetation control, by moving to favorable habitats minimally affected by the disturbances and remaining there. As long as turtles and perhaps other long-lived vertebrates can disperse to non-disturbed habitat, and high levels of mortality do not occur in a population, a long life span may allow them to wait out the impact of disturbance with potentially little effect on long-term population processes.

Citations

27 citations in Web of Science®
27 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2006
Deposited On:28 Mar 2013 15:18
Last Modified:05 Apr 2016 16:41
Publisher:Ecological Society of America
ISSN:1051-0761
Publisher DOI:https://doi.org/10.1890/1051-0761(2006)016[1936:TIODEO]2.0.CO;2
PubMed ID:17069384

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations